Skip to main content
Top
Published in: Molecular Autism 1/2018

Open Access 01-12-2018 | Research

Advanced glycation endproducts, dityrosine and arginine transporter dysfunction in autism - a source of biomarkers for clinical diagnosis

Authors: Attia Anwar, Provvidenza Maria Abruzzo, Sabah Pasha, Kashif Rajpoot, Alessandra Bolotta, Alessandro Ghezzo, Marina Marini, Annio Posar, Paola Visconti, Paul J. Thornalley, Naila Rabbani

Published in: Molecular Autism | Issue 1/2018

Login to get access

Abstract

Background

Clinical chemistry tests for autism spectrum disorder (ASD) are currently unavailable. The aim of this study was to explore the diagnostic utility of proteotoxic biomarkers in plasma and urine, plasma protein glycation, oxidation, and nitration adducts, and related glycated, oxidized, and nitrated amino acids (free adducts), for the clinical diagnosis of ASD.

Methods

Thirty-eight children with ASD (29 male, 9 female; age 7.6 ± 2.0 years) and 31 age-matched healthy controls (23 males, 8 females; 8.6 ± 2.0 years) were recruited for this study. Plasma protein glycation, oxidation, and nitration adducts and amino acid metabolome in plasma and urine were determined by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry. Machine learning methods were then employed to explore and optimize combinations of analyte data for ASD diagnosis.

Results

We found that children with ASD had increased advanced glycation endproducts (AGEs), Nε-carboxymethyl-lysine (CML) and Nω-carboxymethylarginine (CMA), and increased oxidation damage marker, dityrosine (DT), in plasma protein, with respect to healthy controls. We also found that children with ASD had increased CMA free adduct in plasma ultrafiltrate and increased urinary excretion of oxidation free adducts, alpha-aminoadipic semialdehyde and glutamic semialdehyde. From study of renal handling of amino acids, we found that children with ASD had decreased renal clearance of arginine and CMA with respect to healthy controls. Algorithms to discriminate between ASD and healthy controls gave strong diagnostic performance with features: plasma protein AGEs—CML, CMA—and 3-deoxyglucosone-derived hydroimidazolone, and oxidative damage marker, DT. The sensitivity, specificity, and receiver operating characteristic area-under-the-curve were 92%, 84%, and 0.94, respectively.

Conclusions

Changes in plasma AGEs were likely indicative of dysfunctional metabolism of dicarbonyl metabolite precursors of AGEs, glyoxal and 3-deoxyglucosone. DT is formed enzymatically by dual oxidase (DUOX); selective increase of DT as an oxidative damage marker implicates increased DUOX activity in ASD possibly linked to impaired gut mucosal immunity. Decreased renal clearance of arginine and CMA in ASD is indicative of increased arginine transporter activity which may be a surrogate marker of disturbance of neuronal availability of amino acids. Data driven combination of these biomarkers perturbed by proteotoxic stress, plasma protein AGEs and DT, gave diagnostic algorithms of high sensitivity and specificity for ASD.
Appendix
Available only for authorised users
Literature
1.
go back to reference American-Psychiatric-Association. Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Publishing; 2013.CrossRef American-Psychiatric-Association. Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Publishing; 2013.CrossRef
2.
go back to reference Walsh P, Elsabbagh M, Bolton P, Singh I. In search of biomarkers for autism: scientific, social and ethical challenges. Nat Rev Neurosci. 2011;12(10):603–12.CrossRefPubMed Walsh P, Elsabbagh M, Bolton P, Singh I. In search of biomarkers for autism: scientific, social and ethical challenges. Nat Rev Neurosci. 2011;12(10):603–12.CrossRefPubMed
3.
go back to reference Abruzzo PM, Ghezzo A, Bolotta A, Ferreri C, Minguzzi R, Vignini A, Visconti P, Marini M. Perspective biological markers for autism spectrum disorders: advantages of the use of receiver operating characteristic curves in evaluating marker sensitivity and specificity. Dis Markers. 2015;2015:329607.CrossRefPubMedPubMedCentral Abruzzo PM, Ghezzo A, Bolotta A, Ferreri C, Minguzzi R, Vignini A, Visconti P, Marini M. Perspective biological markers for autism spectrum disorders: advantages of the use of receiver operating characteristic curves in evaluating marker sensitivity and specificity. Dis Markers. 2015;2015:329607.CrossRefPubMedPubMedCentral
4.
go back to reference Loke YJ, Hannan AJ, Craig JM. The role of epigenetic change in autism spectrum disorders. Front Neurol. 2015;6:18.CrossRef Loke YJ, Hannan AJ, Craig JM. The role of epigenetic change in autism spectrum disorders. Front Neurol. 2015;6:18.CrossRef
5.
go back to reference Scherer SW, Dawson G. Risk factors for autism: translating genomic discoveries into diagnostics. Hum Genet. 2011;130(1):123–48.CrossRefPubMed Scherer SW, Dawson G. Risk factors for autism: translating genomic discoveries into diagnostics. Hum Genet. 2011;130(1):123–48.CrossRefPubMed
6.
go back to reference Momeni N, Bergquist J, Brudin L, Behnia F, Sivberg B, Joghataei MT, Persson BL. A novel blood-based biomarker for detection of autism spectrum disorders. Transl Psychiatry. 2012;2(3):e91.CrossRefPubMedPubMedCentral Momeni N, Bergquist J, Brudin L, Behnia F, Sivberg B, Joghataei MT, Persson BL. A novel blood-based biomarker for detection of autism spectrum disorders. Transl Psychiatry. 2012;2(3):e91.CrossRefPubMedPubMedCentral
7.
go back to reference Diémé B, Mavel S, Blasco H, Tripi G, Bonnet-Brilhault F, Malvy J, Bocca C, Andres CR, Nadal-Desbarats L, Emond P. Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. J Proteome Res. 2015;14(12):5273–82.CrossRefPubMed Diémé B, Mavel S, Blasco H, Tripi G, Bonnet-Brilhault F, Malvy J, Bocca C, Andres CR, Nadal-Desbarats L, Emond P. Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. J Proteome Res. 2015;14(12):5273–82.CrossRefPubMed
9.
go back to reference Thornalley PJ, Rabbani N. Detection of oxidized and glycated proteins in clinical samples using mass spectrometry—a user’s perspective. Biochim Biophys Acta. 2014;1840(2):818–29.CrossRefPubMed Thornalley PJ, Rabbani N. Detection of oxidized and glycated proteins in clinical samples using mass spectrometry—a user’s perspective. Biochim Biophys Acta. 2014;1840(2):818–29.CrossRefPubMed
10.
go back to reference Melnyk S, Fuchs GJ, Schulz E, Lopez M, Kahler SG, Fussell JJ, Bellando J, Pavliv O, Rose S, Seidel L, et al. Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J Autism Dev Disord. 2012;42(3):367–77.CrossRefPubMedPubMedCentral Melnyk S, Fuchs GJ, Schulz E, Lopez M, Kahler SG, Fussell JJ, Bellando J, Pavliv O, Rose S, Seidel L, et al. Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J Autism Dev Disord. 2012;42(3):367–77.CrossRefPubMedPubMedCentral
11.
go back to reference Frye RE, DeLaTorre R, Taylor H, Slattery J, Melnyk S, Chowdhury N, James SJ. Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl Psychiatry. 2013;3:e273.CrossRefPubMedPubMedCentral Frye RE, DeLaTorre R, Taylor H, Slattery J, Melnyk S, Chowdhury N, James SJ. Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl Psychiatry. 2013;3:e273.CrossRefPubMedPubMedCentral
12.
go back to reference Howsmon DP, Kruger U, Melnyk S, James SJ, Hahn J. Classification and adaptive behavior prediction of children with autism spectrum disorder based upon multivariate data analysis of markers of oxidative stress and DNA methylation. PLoS Comput Biol. 2017;13(3):e1005385.CrossRefPubMedPubMedCentral Howsmon DP, Kruger U, Melnyk S, James SJ, Hahn J. Classification and adaptive behavior prediction of children with autism spectrum disorder based upon multivariate data analysis of markers of oxidative stress and DNA methylation. PLoS Comput Biol. 2017;13(3):e1005385.CrossRefPubMedPubMedCentral
15.
go back to reference Nava C, Rupp J, Boissel J-P, Mignot C, Rastetter A, Amiet C, Jacquette A, Dupuits C, Bouteiller D, Keren B, et al. Hypomorphic variants of cationic amino acid transporter 3 in males with autism spectrum disorders. Amino Acids. 2015;47(12):2647–58.CrossRefPubMedPubMedCentral Nava C, Rupp J, Boissel J-P, Mignot C, Rastetter A, Amiet C, Jacquette A, Dupuits C, Bouteiller D, Keren B, et al. Hypomorphic variants of cationic amino acid transporter 3 in males with autism spectrum disorders. Amino Acids. 2015;47(12):2647–58.CrossRefPubMedPubMedCentral
16.
go back to reference Bala KA, Dogan M, Mutluer T, Kaba S, Aslan O, Balahoroglu R, Cokluk E, Ustyol L, Kocaman S. Plasma amino acid profile in autism spectrum disorder (ASD). European Review for Medical and Pharmacological Sciences. 2016;20(5):923–9.PubMed Bala KA, Dogan M, Mutluer T, Kaba S, Aslan O, Balahoroglu R, Cokluk E, Ustyol L, Kocaman S. Plasma amino acid profile in autism spectrum disorder (ASD). European Review for Medical and Pharmacological Sciences. 2016;20(5):923–9.PubMed
17.
go back to reference Schopler E, Reichler RJ, Renner BR. The childhood autism rating scale. Los Angeles: Western Psychological Services; 1994. Schopler E, Reichler RJ, Renner BR. The childhood autism rating scale. Los Angeles: Western Psychological Services; 1994.
18.
go back to reference Ozonoff S, Heung K, Byrd R, Hansen R, Hertz-Picciotto I. The onset of autism: patterns of symptom emergence in the first years of life. Autism research : official journal of the International Society for Autism Research. 2008;1(6):320–8.CrossRef Ozonoff S, Heung K, Byrd R, Hansen R, Hertz-Picciotto I. The onset of autism: patterns of symptom emergence in the first years of life. Autism research : official journal of the International Society for Autism Research. 2008;1(6):320–8.CrossRef
19.
go back to reference Schopler E, Lansing MD, Reichler RJ, Marcus LM. Psychoeducational profile. 3rd ed. Torrance: Western Psychological Services; 2005. Schopler E, Lansing MD, Reichler RJ, Marcus LM. Psychoeducational profile. 3rd ed. Torrance: Western Psychological Services; 2005.
20.
go back to reference Roid G, Miller LJ. Leiter international performance scale-revised: examiners manual. Wood Dale: Stoelting Co.; 1997. Roid G, Miller LJ. Leiter international performance scale-revised: examiners manual. Wood Dale: Stoelting Co.; 1997.
21.
go back to reference Keys A. Epidemiological studies related to coronary heart disease: characteristics of men aged 40–59 in seven countries. Acta Medica Scandinavica. 1966;180:4–5.CrossRef Keys A. Epidemiological studies related to coronary heart disease: characteristics of men aged 40–59 in seven countries. Acta Medica Scandinavica. 1966;180:4–5.CrossRef
22.
go back to reference Rabbani N, Shaheen F, Anwar A, Masania J, Thornalley PJ. Assay of methylglyoxal-derived protein and nucleotide AGEs. Biochem Soc Trans. 2014;42(2):511–7.CrossRefPubMed Rabbani N, Shaheen F, Anwar A, Masania J, Thornalley PJ. Assay of methylglyoxal-derived protein and nucleotide AGEs. Biochem Soc Trans. 2014;42(2):511–7.CrossRefPubMed
23.
go back to reference Ahmed U, Anwar A, Savage RS, Costa ML, Mackay N, Filer A, Raza K, Watts RA, Winyard PG, Tarr J, et al. Biomarkers of early stage osteoarthritis, rheumatoid arthritis and musculoskeletal health. Sci Rep. 2015;5:9259.CrossRefPubMedPubMedCentral Ahmed U, Anwar A, Savage RS, Costa ML, Mackay N, Filer A, Raza K, Watts RA, Winyard PG, Tarr J, et al. Biomarkers of early stage osteoarthritis, rheumatoid arthritis and musculoskeletal health. Sci Rep. 2015;5:9259.CrossRefPubMedPubMedCentral
24.
go back to reference Ahmed U, Anwar A, Savage RS, Thornalley PJ, Rabbani N. Protein oxidation, nitration and glycation biomarkers for early-stage diagnosis of osteoarthritis of the knee and typing and progression of arthritic disease. Arthritis Res Ther. 2016;18(1):250.CrossRefPubMedPubMedCentral Ahmed U, Anwar A, Savage RS, Thornalley PJ, Rabbani N. Protein oxidation, nitration and glycation biomarkers for early-stage diagnosis of osteoarthritis of the knee and typing and progression of arthritic disease. Arthritis Res Ther. 2016;18(1):250.CrossRefPubMedPubMedCentral
25.
go back to reference Ahmed U, Anwar A, Savage RS, Costa ML, Mackay N, Filer A, Raza K, Watts RA, Winyard PG, Tarr J, et al. Biomarkers of early stage osteoarthritis, rheumatoid arthritis and musculoskeletal health. Sci Rep. 2015;5(9259):9251–7. Ahmed U, Anwar A, Savage RS, Costa ML, Mackay N, Filer A, Raza K, Watts RA, Winyard PG, Tarr J, et al. Biomarkers of early stage osteoarthritis, rheumatoid arthritis and musculoskeletal health. Sci Rep. 2015;5(9259):9251–7.
27.
go back to reference Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Statistical Software. 2010;33(1):1–22.CrossRef Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Statistical Software. 2010;33(1):1–22.CrossRef
28.
go back to reference Sajda P. Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng. 2006;8(1):537–65.CrossRefPubMed Sajda P. Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng. 2006;8(1):537–65.CrossRefPubMed
29.
go back to reference Rhemtulla M, Brosseau-Liard PE, Savalei V. When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychol Methods. 2012;17(3):354–73.CrossRefPubMed Rhemtulla M, Brosseau-Liard PE, Savalei V. When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychol Methods. 2012;17(3):354–73.CrossRefPubMed
30.
go back to reference Xue M, Weickert MO, Qureshi S, Ngianga-Bakwin K, Anwar A, Waldron M, Shafie A, Messenger D, Fowler M, Jenkins G, et al. Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation. Diabetes. 2016;65(8):2282–94.CrossRefPubMed Xue M, Weickert MO, Qureshi S, Ngianga-Bakwin K, Anwar A, Waldron M, Shafie A, Messenger D, Fowler M, Jenkins G, et al. Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation. Diabetes. 2016;65(8):2282–94.CrossRefPubMed
31.
32.
go back to reference Knecht KJ, Dunn JA, McFarland KF, McCance DR, Lyons TJ, Thorpe SR, Baynes JW. Effect of diabetes and aging on carboxymethyllysine levels in human urine. Diabetes. 1991;40(2):190–6.CrossRefPubMed Knecht KJ, Dunn JA, McFarland KF, McCance DR, Lyons TJ, Thorpe SR, Baynes JW. Effect of diabetes and aging on carboxymethyllysine levels in human urine. Diabetes. 1991;40(2):190–6.CrossRefPubMed
33.
go back to reference Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin-the antioxidant proteins. Life Sci. 2004;75(21):2539–49.CrossRefPubMed Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin-the antioxidant proteins. Life Sci. 2004;75(21):2539–49.CrossRefPubMed
34.
go back to reference Ming X, Stein TP, Brimacombe M, Johnson WG, Lambert GH, Wagner GC. Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fat Acids. 2005;73(5):379–84.CrossRef Ming X, Stein TP, Brimacombe M, Johnson WG, Lambert GH, Wagner GC. Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fat Acids. 2005;73(5):379–84.CrossRef
35.
go back to reference Ghezzo A, Visconti P, Abruzzo PM, Bolotta A, Ferreri C, Gobbi G, Malisardi G, Manfredini S, Marini M, Nanetti L, et al. Oxidative stress and erythrocyte membrane alterations in children with autism: correlation with clinical features. PLoS One. 2013;8(6):14.CrossRef Ghezzo A, Visconti P, Abruzzo PM, Bolotta A, Ferreri C, Gobbi G, Malisardi G, Manfredini S, Marini M, Nanetti L, et al. Oxidative stress and erythrocyte membrane alterations in children with autism: correlation with clinical features. PLoS One. 2013;8(6):14.CrossRef
36.
go back to reference Lévigne D, Modarressi A, Krause K-H, Pittet-Cuénod B. NADPH oxidase 4 deficiency leads to impaired wound repair and reduced dityrosine-crosslinking, but does not affect myofibroblast formation. Free Radic Biol Med. 2016;96:374–84.CrossRefPubMed Lévigne D, Modarressi A, Krause K-H, Pittet-Cuénod B. NADPH oxidase 4 deficiency leads to impaired wound repair and reduced dityrosine-crosslinking, but does not affect myofibroblast formation. Free Radic Biol Med. 2016;96:374–84.CrossRefPubMed
37.
go back to reference Ha E-M, Lee K-A, Seo YY, Kim S-H, Lim J-H, Oh B-H, Kim J, Lee W-J. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol. 2009;10(9):949–57.CrossRefPubMed Ha E-M, Lee K-A, Seo YY, Kim S-H, Lim J-H, Oh B-H, Kim J, Lee W-J. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol. 2009;10(9):949–57.CrossRefPubMed
38.
go back to reference Bae YS, Choi MK, Lee W-J. Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol. 2010;31(7):278–87.CrossRefPubMed Bae YS, Choi MK, Lee W-J. Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol. 2010;31(7):278–87.CrossRefPubMed
39.
go back to reference Chang S, Linderholm A, Franzi L, Kenyon N, Grasberger H, Harper R. Dual oxidase regulates neutrophil recruitment in allergic airways. Free Radic Biol Med. 2013;65:38–46.CrossRefPubMed Chang S, Linderholm A, Franzi L, Kenyon N, Grasberger H, Harper R. Dual oxidase regulates neutrophil recruitment in allergic airways. Free Radic Biol Med. 2013;65:38–46.CrossRefPubMed
40.
go back to reference Mussap M, Noto A, Fanos V. Metabolomics of autism spectrum disorders: early insights regarding mammalian-microbial cometabolites. Expert Rev Mol Diagn. 2016;16(8):869–81.CrossRefPubMed Mussap M, Noto A, Fanos V. Metabolomics of autism spectrum disorders: early insights regarding mammalian-microbial cometabolites. Expert Rev Mol Diagn. 2016;16(8):869–81.CrossRefPubMed
41.
go back to reference Delpierre G, Rider MH, Collard F, Stroobant V, Vanstapel F, Santos H, Van Schaftingen E. Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes. 2000;49(10):1627–34.CrossRefPubMed Delpierre G, Rider MH, Collard F, Stroobant V, Vanstapel F, Santos H, Van Schaftingen E. Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes. 2000;49(10):1627–34.CrossRefPubMed
42.
go back to reference Lal S, Randall WC, Taylor AH, Kappler F, Walker M, Brown TR, Szwergold BS. Fructose-3-phosphate production and polyol pathway metabolism in diabetic rat hearts. Metabolism. 1997;46(11):1333–8.CrossRefPubMed Lal S, Randall WC, Taylor AH, Kappler F, Walker M, Brown TR, Szwergold BS. Fructose-3-phosphate production and polyol pathway metabolism in diabetic rat hearts. Metabolism. 1997;46(11):1333–8.CrossRefPubMed
43.
go back to reference Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. BiochemJ. 1999;344(1):109–16.CrossRef Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. BiochemJ. 1999;344(1):109–16.CrossRef
44.
go back to reference Baba SP, Barski OA, Ahmed Y, O'Toole TE, Conklin DJ, Bhatnagar A, Srivastava S. Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue. Diabetes. 2009;58(11):2486–97.CrossRefPubMedPubMedCentral Baba SP, Barski OA, Ahmed Y, O'Toole TE, Conklin DJ, Bhatnagar A, Srivastava S. Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue. Diabetes. 2009;58(11):2486–97.CrossRefPubMedPubMedCentral
45.
go back to reference Ming X, Stein TP, Barnes V, Rhodes N, Guo L. Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res. 2012;11(12):5856–62.CrossRefPubMed Ming X, Stein TP, Barnes V, Rhodes N, Guo L. Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res. 2012;11(12):5856–62.CrossRefPubMed
46.
go back to reference West PR, Amaral DG, Bais P, Smith AM, Egnash LA, Ross ME, Palmer JA, Fontaine BR, Conard KR, Corbett BA, et al. Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS One. 2014;9(11):e112445.CrossRefPubMedPubMedCentral West PR, Amaral DG, Bais P, Smith AM, Egnash LA, Ross ME, Palmer JA, Fontaine BR, Conard KR, Corbett BA, et al. Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS One. 2014;9(11):e112445.CrossRefPubMedPubMedCentral
47.
go back to reference Gevi F, Zolla L, Gabriele S, Persico AM. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Molecular Autism. 2016;7(1):47.CrossRefPubMedPubMedCentral Gevi F, Zolla L, Gabriele S, Persico AM. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Molecular Autism. 2016;7(1):47.CrossRefPubMedPubMedCentral
48.
go back to reference Kuwabara H, Yamasue H, Koike S, Inoue H, Kawakubo Y, Kuroda M, Takano Y, Iwashiro N, Natsubori T, Aoki Y, et al. Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS One. 2013;8(9):e73814.CrossRefPubMedPubMedCentral Kuwabara H, Yamasue H, Koike S, Inoue H, Kawakubo Y, Kuroda M, Takano Y, Iwashiro N, Natsubori T, Aoki Y, et al. Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS One. 2013;8(9):e73814.CrossRefPubMedPubMedCentral
49.
go back to reference Foerster A, Henle T. Glycation in food and metabolic transit of dietary AGEs (advanced glycation end-products): studies on the urinary excretion of pyrraline. BiochemSocTrans 2003; 31:1383-1385. Foerster A, Henle T. Glycation in food and metabolic transit of dietary AGEs (advanced glycation end-products): studies on the urinary excretion of pyrraline. BiochemSocTrans 2003; 31:1383-1385.
50.
go back to reference Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.CrossRefPubMed Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.CrossRefPubMed
51.
go back to reference Broer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev. 2008;88(1):249–86.CrossRefPubMed Broer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev. 2008;88(1):249–86.CrossRefPubMed
52.
go back to reference Tărlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M, Galluccio M, Tesulov M, Morelli E, Sonmez FM, et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell. 2016;167(6):1481–94. e1418CrossRefPubMedPubMedCentral Tărlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M, Galluccio M, Tesulov M, Morelli E, Sonmez FM, et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell. 2016;167(6):1481–94. e1418CrossRefPubMedPubMedCentral
Metadata
Title
Advanced glycation endproducts, dityrosine and arginine transporter dysfunction in autism - a source of biomarkers for clinical diagnosis
Authors
Attia Anwar
Provvidenza Maria Abruzzo
Sabah Pasha
Kashif Rajpoot
Alessandra Bolotta
Alessandro Ghezzo
Marina Marini
Annio Posar
Paola Visconti
Paul J. Thornalley
Naila Rabbani
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2018
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-017-0183-3

Other articles of this Issue 1/2018

Molecular Autism 1/2018 Go to the issue