Skip to main content
Top
Published in: Molecular Autism 1/2016

Open Access 01-12-2016 | Research

Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology

Authors: Lam Son Nguyen, Marylin Lepleux, Mélanie Makhlouf, Christelle Martin, Julien Fregeac, Karine Siquier-Pernet, Anne Philippe, François Feron, Bruno Gepner, Claire Rougeulle, Yann Humeau, Laurence Colleaux

Published in: Molecular Autism | Issue 1/2016

Login to get access

Abstract

Background

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders caused by the interaction between genetic vulnerability and environmental factors. MicroRNAs (miRNAs) are key posttranscriptional regulators involved in multiple aspects of brain development and function. Previous studies have investigated miRNAs expression in ASD using non-neural cells like lymphoblastoid cell lines (LCL) or postmortem tissues. However, the relevance of LCLs is questionable in the context of a neurodevelopmental disorder, and the impact of the cause of death and/or post-death handling of tissue likely contributes to the variations observed between studies on brain samples.

Methods

miRNA profiling using TLDA high-throughput real-time qPCR was performed on miRNAs extracted from olfactory mucosal stem cells (OMSCs) biopsied from eight patients and six controls. This tissue is considered as a closer tissue to neural stem cells that could be sampled in living patients and was never investigated for such a purpose before. Real-time PCR was used to validate a set of differentially expressed miRNAs, and bioinformatics analysis determined common pathways and gene targets. Luciferase assays and real-time PCR analysis were used to evaluate the effect of miRNAs misregulation on the expression and translation of several autism-related transcripts. Viral vector-mediated expression was used to evaluate the impact of miRNAs deregulation on neuronal or glial cells functions.

Results

We identified a signature of four miRNAs (miR-146a, miR-221, miR-654-5p, and miR-656) commonly deregulated in ASD. This signature is conserved in primary skin fibroblasts and may allow discriminating between ASD and intellectual disability samples. Putative target genes of the differentially expressed miRNAs were enriched for pathways previously associated to ASD, and altered levels of neuronal transcripts targeted by miR-146a, miR-221, and miR-656 were observed in patients’ cells. In the mouse brain, miR-146a, and miR-221 display strong neuronal expression in regions important for high cognitive functions, and we demonstrated that reproducing abnormal miR-146a expression in mouse primary cell cultures leads to impaired neuronal dendritic arborization and increased astrocyte glutamate uptake capacities.

Conclusions

While independent replication experiments are needed to clarify whether these four miRNAS could serve as early biomarkers of ASD, these findings may have important diagnostic implications. They also provide mechanistic connection between miRNA dysregulation and ASD pathophysiology and may open up new opportunities for therapeutic.
Appendix
Available only for authorised users
Literature
4.
go back to reference Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J. Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics. 2006;7:118. doi:10.1186/1471-2164-7-118.PubMedPubMedCentralCrossRef Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J. Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics. 2006;7:118. doi:10.​1186/​1471-2164-7-118.PubMedPubMedCentralCrossRef
11.
go back to reference Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2010;2(4):23. doi:10.1186/gm144.PubMedPubMedCentralCrossRef Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2010;2(4):23. doi:10.​1186/​gm144.PubMedPubMedCentralCrossRef
14.
go back to reference Delorme B, Nivet E, Gaillard J, Haupl T, Ringe J, Deveze A, et al. The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev. 2010;19(6):853–66. doi:10.1089/scd.2009.0267.PubMedCrossRef Delorme B, Nivet E, Gaillard J, Haupl T, Ringe J, Deveze A, et al. The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev. 2010;19(6):853–66. doi:10.​1089/​scd.​2009.​0267.PubMedCrossRef
15.
17.
go back to reference Ronnett GV, Leopold D, Cai X, Hoffbuhr KC, Moses L, Hoffman EP, et al. Olfactory biopsies demonstrate a defect in neuronal development in Rett’s syndrome. Ann Neurol. 2003;54(2):206–18. doi:10.1002/ana.10633.PubMedCrossRef Ronnett GV, Leopold D, Cai X, Hoffbuhr KC, Moses L, Hoffman EP, et al. Olfactory biopsies demonstrate a defect in neuronal development in Rett’s syndrome. Ann Neurol. 2003;54(2):206–18. doi:10.​1002/​ana.​10633.PubMedCrossRef
20.
go back to reference Feron F, Gepner B, Lacassagne E, Stephan D, Mesnage B, Blanchard MP, et al. Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders. Mol Psychiatry. 2015. doi:10.1038/mp.2015.106 Feron F, Gepner B, Lacassagne E, Stephan D, Mesnage B, Blanchard MP, et al. Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders. Mol Psychiatry. 2015. doi:10.​1038/​mp.​2015.​106
21.
go back to reference Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.PubMedPubMedCentralCrossRef Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.PubMedPubMedCentralCrossRef
25.
go back to reference Kumari D, Bhattacharya A, Nadel J, Moulton K, Zeak NM, Glicksman A, et al. Identification of fragile X syndrome specific molecular markers in human fibroblasts: a useful model to test the efficacy of therapeutic drugs. Hum Mutat. 2014;35(12):1485–94. doi:10.1002/humu.22699.PubMedPubMedCentralCrossRef Kumari D, Bhattacharya A, Nadel J, Moulton K, Zeak NM, Glicksman A, et al. Identification of fragile X syndrome specific molecular markers in human fibroblasts: a useful model to test the efficacy of therapeutic drugs. Hum Mutat. 2014;35(12):1485–94. doi:10.​1002/​humu.​22699.PubMedPubMedCentralCrossRef
27.
go back to reference Jovicic A, Roshan R, Moisoi N, Pradervand S, Moser R, Pillai B, et al. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci. 2013;33(12):5127–37. doi:10.1523/JNEUROSCI.0600-12.2013.PubMedCrossRef Jovicic A, Roshan R, Moisoi N, Pradervand S, Moser R, Pillai B, et al. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci. 2013;33(12):5127–37. doi:10.​1523/​JNEUROSCI.​0600-12.​2013.PubMedCrossRef
31.
go back to reference Rodrigues AC, Conceiçao IC, Kwiatkowska K, Picanço I, Café C, Almeida J, et al. Expression profile of circulating miRNAs in autism spectrum disorders. Conference Abstract. Glasgow, Scotland, United Kingdom: European Society of Human Genetics; 2015. Rodrigues AC, Conceiçao IC, Kwiatkowska K, Picanço I, Café C, Almeida J, et al. Expression profile of circulating miRNAs in autism spectrum disorders. Conference Abstract. Glasgow, Scotland, United Kingdom: European Society of Human Genetics; 2015.
36.
go back to reference Zongaro S, Hukema R, D'Antoni S, Davidovic L, Barbry P, Catania MV, et al. The 3′ UTR of FMR1 mRNA is a target of miR-101, miR-129-5p and miR-221: implications for the molecular pathology of FXTAS at the synapse. Human Molecular Genetics. 2013. doi:10.1093/hmg/ddt044 Zongaro S, Hukema R, D'Antoni S, Davidovic L, Barbry P, Catania MV, et al. The 3′ UTR of FMR1 mRNA is a target of miR-101, miR-129-5p and miR-221: implications for the molecular pathology of FXTAS at the synapse. Human Molecular Genetics. 2013. doi:10.​1093/​hmg/​ddt044
38.
45.
go back to reference Rahn KA, Slusher BS, Kaplin AI. Glutamate in CNS neurodegeneration and cognition and its regulation by GCPII inhibition. Curr Med Chem. 2012;19(9):1335–45.PubMedCrossRef Rahn KA, Slusher BS, Kaplin AI. Glutamate in CNS neurodegeneration and cognition and its regulation by GCPII inhibition. Curr Med Chem. 2012;19(9):1335–45.PubMedCrossRef
48.
go back to reference Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN, et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 2012;13:115. doi:10.1186/1471-2202-13-115.PubMedPubMedCentralCrossRef Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN, et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 2012;13:115. doi:10.​1186/​1471-2202-13-115.PubMedPubMedCentralCrossRef
53.
Metadata
Title
Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology
Authors
Lam Son Nguyen
Marylin Lepleux
Mélanie Makhlouf
Christelle Martin
Julien Fregeac
Karine Siquier-Pernet
Anne Philippe
François Feron
Bruno Gepner
Claire Rougeulle
Yann Humeau
Laurence Colleaux
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2016
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-015-0064-6

Other articles of this Issue 1/2016

Molecular Autism 1/2016 Go to the issue