Skip to main content
Top
Published in: Molecular Autism 1/2015

Open Access 01-12-2015 | Research

Platelet studies in autism spectrum disorder patients and first-degree relatives

Authors: Nora Bijl, Chantal Thys, Christine Wittevrongel, Wouter De la Marche, Koenraad Devriendt, Hilde Peeters, Chris Van Geet, Kathleen Freson

Published in: Molecular Autism | Issue 1/2015

Login to get access

Abstract

Background

Platelets have been proven to be a useful cellular model to study some neuropathologies, due to the overlapping biological features between neurons and platelets as granule secreting cells. Altered platelet dense granule morphology was previously reported in three autism spectrum disorder (ASD) patients with chromosomal translocations that disrupted ASD candidate genes NBEA, SCAMP5, and AMYSIN, but a systematic analysis of platelet function in ASD is lacking in contrast to numerous reports of elevated serotonin levels in platelets and blood as potential biomarker for ASD.

Methods

We explored platelet count, size, epinephrine-induced activation, and dense granule ATP secretion in a cohort of 159 ASD patients, their 289 first-degree relatives (103 unaffected siblings, 99 mothers, and 87 fathers), 45 adult controls, and 65 pediatric controls. For each of the responses separately, a linear mixed model with gender as a covariate was used to compare the level between groups. We next investigated the correlation between platelet function outcomes and severity of impairments in social behavior (social responsiveness score (SRS)).

Results

The average platelet count was increased in ASD patients and siblings vs. controls (ASD 320.3 × 109/L, p = 0.003; siblings 332.0 × 109/L, p < 0.001; controls 283.0 × 109/L). The maximal platelet secretion-dependent aggregation response to epinephrine was not significantly lower for ASD patients. However, secondary wave responses following stimulation with epinephrine were more frequently delayed or absent compared to controls (ASD 52 %, siblings 45 %, parents 53 %, controls 22 %, p = 0.002). In addition, stimulated release of ATP from dense granules was reduced in ASD patients, siblings, and parents vs. controls following activation of platelets with either collagen (ASD 1.54 μM, p = 0.001; siblings 1.51 μM, p < 0.001; parents 1.67 μM, p = 0.021; controls 2.03 μM) or ADP (ASD 0.96 μM, p = 0.003; siblings 1.00 μM, p = 0.012; parents 1.17 μM, p = 0.21; controls 1.40 μM). Plasma serotonin levels were increased for ASD patients (n = 20, p = 0.005) and siblings (n = 20, p = 0.0001) vs. controls (n = 16). No significant correlations were found in the different groups between SRS scores and count, size, epinephrine aggregation, or ATP release.

Conclusions

We report increased platelet counts, decreased platelet ATP dense granule secretion, and increased serotonin plasma levels not only in ASD patients but also in their first-degree relatives. This suggests that potential genetic factors associated with platelet counts and granule secretion can be associated with, but are not fully penetrant for ASD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Developmental Disabilities Monitoring Network. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63:1–21. Developmental Disabilities Monitoring Network. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63:1–21.
2.
go back to reference Constantino JN, Todorov A, Hilton C, Law P, Zhang Y, Molloy E, et al. Autism recurrence in half siblings: strong support for genetic mechanisms of transmission in ASD. Mol Psychiatry. 2013;18:137–8.CrossRefPubMed Constantino JN, Todorov A, Hilton C, Law P, Zhang Y, Molloy E, et al. Autism recurrence in half siblings: strong support for genetic mechanisms of transmission in ASD. Mol Psychiatry. 2013;18:137–8.CrossRefPubMed
3.
go back to reference Caglayan AO. Genetic causes of syndromic and non-syndromic autism. Dev Med Child Neurol. 2010;52:130–8.CrossRefPubMed Caglayan AO. Genetic causes of syndromic and non-syndromic autism. Dev Med Child Neurol. 2010;52:130–8.CrossRefPubMed
5.
go back to reference Ronemus M, Iossifov I, Levy D, Wigler M. The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet. 2014;15:133–41.CrossRefPubMed Ronemus M, Iossifov I, Levy D, Wigler M. The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet. 2014;15:133–41.CrossRefPubMed
6.
go back to reference Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94.PubMedCentralCrossRefPubMed Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94.PubMedCentralCrossRefPubMed
7.
8.
9.
go back to reference Gai X, Xie HM, Perin JC, Takahashi N, Murphy K, Wenocur AS, et al. Rare structural variation of synapse and neurotransmission genes in autism. Mol Psychiatry. 2012;17:402–11.PubMedCentralCrossRefPubMed Gai X, Xie HM, Perin JC, Takahashi N, Murphy K, Wenocur AS, et al. Rare structural variation of synapse and neurotransmission genes in autism. Mol Psychiatry. 2012;17:402–11.PubMedCentralCrossRefPubMed
10.
go back to reference Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron. 2011;70:898–907.PubMedCentralCrossRefPubMed Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron. 2011;70:898–907.PubMedCentralCrossRefPubMed
11.
12.
go back to reference Shinoda Y, Sadakata T, Furuichi T. Animal models of autism spectrum disorder (ASD): a synaptic-level approach to autistic-like behavior in mice. Exp Anim. 2013;62:71–8.CrossRefPubMed Shinoda Y, Sadakata T, Furuichi T. Animal models of autism spectrum disorder (ASD): a synaptic-level approach to autistic-like behavior in mice. Exp Anim. 2013;62:71–8.CrossRefPubMed
13.
go back to reference Stewart AM, Nguyen M, Wong K, Poudel MK, Kalueff AV. Developing zebrafish models of autism spectrum disorder (ASD). Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:27–36.CrossRefPubMed Stewart AM, Nguyen M, Wong K, Poudel MK, Kalueff AV. Developing zebrafish models of autism spectrum disorder (ASD). Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:27–36.CrossRefPubMed
14.
go back to reference Goubau C, Buyse GM, Van Geet C, Freson K. The contribution of platelet studies to the understanding of disease mechanisms in complex and monogenetic neurological disorders. Dev Med Child Neurol. 2014;56:724–31.CrossRefPubMed Goubau C, Buyse GM, Van Geet C, Freson K. The contribution of platelet studies to the understanding of disease mechanisms in complex and monogenetic neurological disorders. Dev Med Child Neurol. 2014;56:724–31.CrossRefPubMed
16.
go back to reference Goubau C, Devriendt K, Van der Aa N, Crepel A, Wieczorek D, Kleefstra T, et al. Platelet defects in congenital variant of Rett syndrome patients with FOXG1 mutations or reduced expression due to a position effect at 14q12. Eur J Hum Genet. 2013;21:1349–55.PubMedCentralCrossRefPubMed Goubau C, Devriendt K, Van der Aa N, Crepel A, Wieczorek D, Kleefstra T, et al. Platelet defects in congenital variant of Rett syndrome patients with FOXG1 mutations or reduced expression due to a position effect at 14q12. Eur J Hum Genet. 2013;21:1349–55.PubMedCentralCrossRefPubMed
17.
go back to reference Goubau C, Jaeken J, Levtchenko EN, Thys C, Di Michele M, Martens GA, et al. Homozygosity for aquaporin 7 G264V in three unrelated children with hyperglyceroluria and a mild platelet secretion defect. Genet Med. 2013;15:55–63.CrossRefPubMed Goubau C, Jaeken J, Levtchenko EN, Thys C, Di Michele M, Martens GA, et al. Homozygosity for aquaporin 7 G264V in three unrelated children with hyperglyceroluria and a mild platelet secretion defect. Genet Med. 2013;15:55–63.CrossRefPubMed
18.
go back to reference Di Michele M, Goubau C, Waelkens E, Thys C, De Vos R, Overbergh L, et al. Functional studies and proteomics in platelets and fibroblasts reveal a lysosomal defect with increased cathepsin-dependent apoptosis in ATP1A3 defective alternating hemiplegia of childhood. J Proteomics. 2013;86:53–69.CrossRefPubMed Di Michele M, Goubau C, Waelkens E, Thys C, De Vos R, Overbergh L, et al. Functional studies and proteomics in platelets and fibroblasts reveal a lysosomal defect with increased cathepsin-dependent apoptosis in ATP1A3 defective alternating hemiplegia of childhood. J Proteomics. 2013;86:53–69.CrossRefPubMed
19.
go back to reference Freson K, Izzi B, Labarque V, Van Helvoirt M, Thys C, Wittevrongel C, et al. GNAS defects identified by stimulatory G protein alpha-subunit signalling studies in platelets. J Clin Endocrinol Metab. 2008;93:4851–9.CrossRefPubMed Freson K, Izzi B, Labarque V, Van Helvoirt M, Thys C, Wittevrongel C, et al. GNAS defects identified by stimulatory G protein alpha-subunit signalling studies in platelets. J Clin Endocrinol Metab. 2008;93:4851–9.CrossRefPubMed
20.
go back to reference Boullin DJ, Coleman M, O’Brien RA. Abnormalities in platelet 5-hydroxytryptamine efflux in patients with infantile autism. Nature. 1970;226:371–2.CrossRefPubMed Boullin DJ, Coleman M, O’Brien RA. Abnormalities in platelet 5-hydroxytryptamine efflux in patients with infantile autism. Nature. 1970;226:371–2.CrossRefPubMed
21.
go back to reference Pletscher A. Platelets as models for monoaminergic neurons. Essays Neurochem Neuropharmacol. 1978;3:49–101.PubMed Pletscher A. Platelets as models for monoaminergic neurons. Essays Neurochem Neuropharmacol. 1978;3:49–101.PubMed
22.
go back to reference Lesch KP, Wolozin BL, Murphy DL, Reiderer P. Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem. 1993;60:2319–22.CrossRefPubMed Lesch KP, Wolozin BL, Murphy DL, Reiderer P. Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem. 1993;60:2319–22.CrossRefPubMed
23.
go back to reference Goubau C, Buyse GM, Di Michele M, Van Geet C, Freson K. Regulated granule trafficking in platelets and neurons: a common molecular machinery. Eur J Paediatr Neurol. 2013;17:117–25.CrossRefPubMed Goubau C, Buyse GM, Di Michele M, Van Geet C, Freson K. Regulated granule trafficking in platelets and neurons: a common molecular machinery. Eur J Paediatr Neurol. 2013;17:117–25.CrossRefPubMed
24.
go back to reference Reed GL, Fitzgerald ML, Polgár J. Molecular mechanisms of platelet exocytosis: insights into the “secrete” life of thrombocytes. Blood. 2000;96:3334–42.PubMed Reed GL, Fitzgerald ML, Polgár J. Molecular mechanisms of platelet exocytosis: insights into the “secrete” life of thrombocytes. Blood. 2000;96:3334–42.PubMed
27.
go back to reference Veitinger M, Varga B, Guterres SB, Zellner M. Platelets, a reliable source for peripheral Alzheimer’s disease biomarkers? Acta Neuropathol Commun. 2014;2:65.PubMedCentralCrossRefPubMed Veitinger M, Varga B, Guterres SB, Zellner M. Platelets, a reliable source for peripheral Alzheimer’s disease biomarkers? Acta Neuropathol Commun. 2014;2:65.PubMedCentralCrossRefPubMed
28.
go back to reference Pagan C, Delorme R, Callebert J, Goubran-Botros H, Amsellem F, Drouot X, et al. The serotonin-N-acetylserotonin-melatonin pathway as a biomarker for autism spectrum disorders. Transl Psychiatry. 2014; doi:10.1038/tp.2014.120 Pagan C, Delorme R, Callebert J, Goubran-Botros H, Amsellem F, Drouot X, et al. The serotonin-N-acetylserotonin-melatonin pathway as a biomarker for autism spectrum disorders. Transl Psychiatry. 2014; doi:10.​1038/​tp.​2014.​120
29.
go back to reference Cross S, Kim SJ, Weiss LA, Delahanty RJ, Sutcliffe JS, Leventhal BL, et al. Molecular genetics of the platelet serotonin system in first-degree relatives of patients with autism. Neuropsychopharmacology. 2008;33:353–60.PubMedCentralCrossRefPubMed Cross S, Kim SJ, Weiss LA, Delahanty RJ, Sutcliffe JS, Leventhal BL, et al. Molecular genetics of the platelet serotonin system in first-degree relatives of patients with autism. Neuropsychopharmacology. 2008;33:353–60.PubMedCentralCrossRefPubMed
30.
go back to reference Cook Jr EH, Leventhal BL, Freedman DX. Free serotonin in plasma: autistic children and their first-degree relatives. Biol Psychiatry. 1988;24:488–91.CrossRefPubMed Cook Jr EH, Leventhal BL, Freedman DX. Free serotonin in plasma: autistic children and their first-degree relatives. Biol Psychiatry. 1988;24:488–91.CrossRefPubMed
31.
go back to reference Piven J, Tsai GC, Nehme E, Coyle JT, Chase GA, Folstein SE. Platelet serotonin, a possible marker for familial autism. J Autism Dev Disord. 1991;21:51–9.CrossRefPubMed Piven J, Tsai GC, Nehme E, Coyle JT, Chase GA, Folstein SE. Platelet serotonin, a possible marker for familial autism. J Autism Dev Disord. 1991;21:51–9.CrossRefPubMed
32.
go back to reference Gabriele S, Sacco R, Persico AM. Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol. 2014;24:919–29.CrossRefPubMed Gabriele S, Sacco R, Persico AM. Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol. 2014;24:919–29.CrossRefPubMed
33.
go back to reference Janušonis S. Serotonin dynamics in and around the central nervous system: is autism solvable without fundamental insights? Int J Dev Neurosci. 2014;39:9–15.CrossRefPubMed Janušonis S. Serotonin dynamics in and around the central nervous system: is autism solvable without fundamental insights? Int J Dev Neurosci. 2014;39:9–15.CrossRefPubMed
34.
go back to reference Brand T, Anderson GM. The measurement of platelet-poor plasma serotonin: a systematic review of prior reports and recommendations for improved analysis. Clin Chem. 2011;57:1376–86.CrossRefPubMed Brand T, Anderson GM. The measurement of platelet-poor plasma serotonin: a systematic review of prior reports and recommendations for improved analysis. Clin Chem. 2011;57:1376–86.CrossRefPubMed
35.
go back to reference Castermans D, Volders K, Crepel A, Backx L, De Vos R, Freson K, et al. SCAMP5, NBEA and AMISYN: three candidate genes for autism involved in secretion of large dense-core vesicles. Hum Mol Genet. 2010;19:1368–78.CrossRefPubMed Castermans D, Volders K, Crepel A, Backx L, De Vos R, Freson K, et al. SCAMP5, NBEA and AMISYN: three candidate genes for autism involved in secretion of large dense-core vesicles. Hum Mol Genet. 2010;19:1368–78.CrossRefPubMed
36.
go back to reference Volders K, Nuytens K, Creemers JWM. The autism candidate gene Neurobeachin encodes a scaffolding protein implicated in membrane trafficking and signaling. Curr Mol Med. 2011;11:204–17.CrossRefPubMed Volders K, Nuytens K, Creemers JWM. The autism candidate gene Neurobeachin encodes a scaffolding protein implicated in membrane trafficking and signaling. Curr Mol Med. 2011;11:204–17.CrossRefPubMed
37.
go back to reference Nuytens K, Gantois I, Stijnen P, Iscru E, Laeremans A, Serneels L, et al. Haploinsufficiency of the autism candidate gene Neurobeachin induces autism-like behaviors and affects cellular and molecular processes of synaptic plasticity in mice. Neurobiol Dis. 2013;51:144–51.CrossRefPubMed Nuytens K, Gantois I, Stijnen P, Iscru E, Laeremans A, Serneels L, et al. Haploinsufficiency of the autism candidate gene Neurobeachin induces autism-like behaviors and affects cellular and molecular processes of synaptic plasticity in mice. Neurobiol Dis. 2013;51:144–51.CrossRefPubMed
38.
go back to reference Nuytens K, Tuand K, Di Michele M, Boonen K, Waelkens E, Freson K, et al. Platelets of mice heterozygous for neurobeachin, a candidate gene for autism spectrum disorder, display protein changes related to aberrant protein kinase A activity. Mol Autism. 2013;4:43.PubMedCentralCrossRefPubMed Nuytens K, Tuand K, Di Michele M, Boonen K, Waelkens E, Freson K, et al. Platelets of mice heterozygous for neurobeachin, a candidate gene for autism spectrum disorder, display protein changes related to aberrant protein kinase A activity. Mol Autism. 2013;4:43.PubMedCentralCrossRefPubMed
39.
go back to reference De la Marche W, Noens I, Kuppens S, Spilt JL, Boets B, Steyaert J. Measuring quantitative autism traits in families: informant effect or intergenerational transmission? Eur Child Adolesc Psychiatry. 2014;24(4):385–95.CrossRefPubMed De la Marche W, Noens I, Kuppens S, Spilt JL, Boets B, Steyaert J. Measuring quantitative autism traits in families: informant effect or intergenerational transmission? Eur Child Adolesc Psychiatry. 2014;24(4):385–95.CrossRefPubMed
40.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Publishing Inc; 2000. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Publishing Inc; 2000.
41.
go back to reference Skuse D, Warrington R, Bishop D, Chowdhury U, Lau J, Mandy W, et al. The developmental, dimensional and diagnostic interview (3di): a novel computerized assessment for autism spectrum disorders. J Am Acad Child Adolesc Psychiatry. 2004;43:548–58.CrossRefPubMed Skuse D, Warrington R, Bishop D, Chowdhury U, Lau J, Mandy W, et al. The developmental, dimensional and diagnostic interview (3di): a novel computerized assessment for autism spectrum disorders. J Am Acad Child Adolesc Psychiatry. 2004;43:548–58.CrossRefPubMed
42.
go back to reference Constantino JN, Gruber CP. Social Responsiveness Scale (SRS). Los Angelos: Western Psychological Services; 2005. Constantino JN, Gruber CP. Social Responsiveness Scale (SRS). Los Angelos: Western Psychological Services; 2005.
43.
go back to reference Di Michele M, Thys C, Waelkens E, Overbergh L, D’Hertog W, Mathieu C, et al. An integrated proteomics and genomics analysis to unravel a heterogeneous platelet secretion defect. J Proteomics. 2011;74:902–13.CrossRefPubMed Di Michele M, Thys C, Waelkens E, Overbergh L, D’Hertog W, Mathieu C, et al. An integrated proteomics and genomics analysis to unravel a heterogeneous platelet secretion defect. J Proteomics. 2011;74:902–13.CrossRefPubMed
44.
go back to reference Rabe-Hesketh S, Skrondal A, Gjessing HK. Biometrical modeling of twin and family data using standard mixed model software. Biometrics. 2008;64:280–8.CrossRefPubMed Rabe-Hesketh S, Skrondal A, Gjessing HK. Biometrical modeling of twin and family data using standard mixed model software. Biometrics. 2008;64:280–8.CrossRefPubMed
45.
go back to reference Gieger C, Radhakrishnan A, Cvejic A, Tang W, Porcu E, Pistis G, et al. New gene functions in megakaryopoiesis and platelet formation. Nature. 2011;480:201–8.PubMedCentralCrossRefPubMed Gieger C, Radhakrishnan A, Cvejic A, Tang W, Porcu E, Pistis G, et al. New gene functions in megakaryopoiesis and platelet formation. Nature. 2011;480:201–8.PubMedCentralCrossRefPubMed
46.
go back to reference Bessman JD, Williams LJ, Gilmer PR. Mean platelet volume. The inverse relation of platelet size and count in normal subjects, and an artifact of other particles. Am J Clin Pathol. 1981;76:289–93.PubMed Bessman JD, Williams LJ, Gilmer PR. Mean platelet volume. The inverse relation of platelet size and count in normal subjects, and an artifact of other particles. Am J Clin Pathol. 1981;76:289–93.PubMed
47.
go back to reference Rendu F, Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and functions. Platelets. 2001;12:261–73.CrossRefPubMed Rendu F, Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and functions. Platelets. 2001;12:261–73.CrossRefPubMed
49.
go back to reference Ambrosio AL, Boyle JA, Di Pietro SM. Mechanism of platelet dense granule biogenesis: study of cargo transport and function of Rab32 and Rab38 in a model system. Blood. 2012;120:4072–81.PubMedCentralCrossRefPubMed Ambrosio AL, Boyle JA, Di Pietro SM. Mechanism of platelet dense granule biogenesis: study of cargo transport and function of Rab32 and Rab38 in a model system. Blood. 2012;120:4072–81.PubMedCentralCrossRefPubMed
50.
go back to reference Chen L, Kostadima M, Martens JH, Canu G, Garcia SP, Turro E, et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014;345:1251033.PubMedCentralCrossRefPubMed Chen L, Kostadima M, Martens JH, Canu G, Garcia SP, Turro E, et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014;345:1251033.PubMedCentralCrossRefPubMed
51.
go back to reference Westbury SK, Turro E, Greene D, Lentaigne C, Kelly AM, Bariana TK, et al. BRIDGE-BPD Consortium. Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Med. 2015;7:36.PubMedCentralCrossRefPubMed Westbury SK, Turro E, Greene D, Lentaigne C, Kelly AM, Bariana TK, et al. BRIDGE-BPD Consortium. Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Med. 2015;7:36.PubMedCentralCrossRefPubMed
52.
go back to reference Freson K, Wijgaerts A, van Geet C. Update on the causes of platelet disorders and functional consequences. Int J Lab Hematol. 2014;36:313–25.CrossRefPubMed Freson K, Wijgaerts A, van Geet C. Update on the causes of platelet disorders and functional consequences. Int J Lab Hematol. 2014;36:313–25.CrossRefPubMed
53.
go back to reference Factor SA, Ortof E, Dentinger MP, Mankes R, Barron KD. Platelet morphology in Parkinson’s disease: an electron microscopic study. J Neurol Sci. 1994;122:84–9.CrossRefPubMed Factor SA, Ortof E, Dentinger MP, Mankes R, Barron KD. Platelet morphology in Parkinson’s disease: an electron microscopic study. J Neurol Sci. 1994;122:84–9.CrossRefPubMed
54.
go back to reference Zellner M, Baureder M, Rappold E, Bugert P, Kotzailias N, Babeluk R, et al. Comparative platelet proteome analysis reveals an increase of monoamine oxidase-B protein expression in Alzheimer’s disease but not in non-demented Parkinson’s disease patients. J Proteomics. 2012;75:2080–92.CrossRefPubMed Zellner M, Baureder M, Rappold E, Bugert P, Kotzailias N, Babeluk R, et al. Comparative platelet proteome analysis reveals an increase of monoamine oxidase-B protein expression in Alzheimer’s disease but not in non-demented Parkinson’s disease patients. J Proteomics. 2012;75:2080–92.CrossRefPubMed
55.
56.
go back to reference Tiedt R, Coers J, Ziegler S, Wiestner A, Hao-Shen H, Bornmann C, et al. Pronounced thrombocytosis in transgenic mice expressing reduced levels of Mpl in platelets and terminally differentiated megakaryocytes. Blood. 2009;113:1768–77.CrossRefPubMed Tiedt R, Coers J, Ziegler S, Wiestner A, Hao-Shen H, Bornmann C, et al. Pronounced thrombocytosis in transgenic mice expressing reduced levels of Mpl in platelets and terminally differentiated megakaryocytes. Blood. 2009;113:1768–77.CrossRefPubMed
57.
go back to reference Geller E, Yuwiler A, Freeman BJ, Ritvo E. Platelet size, number, and serotonin content in blood of autistic, childhood schizophrenic, and normal children. J Autism Dev Disord. 1988;18:119–26.CrossRefPubMed Geller E, Yuwiler A, Freeman BJ, Ritvo E. Platelet size, number, and serotonin content in blood of autistic, childhood schizophrenic, and normal children. J Autism Dev Disord. 1988;18:119–26.CrossRefPubMed
58.
go back to reference Marazziti D, Muratori F, Cesari A, Masala I, Baroni S, Giannaccini G, et al. Increased density of the platelet serotonin transporter in autism. Pharmacopsychiatry. 2000;33:165–8.CrossRefPubMed Marazziti D, Muratori F, Cesari A, Masala I, Baroni S, Giannaccini G, et al. Increased density of the platelet serotonin transporter in autism. Pharmacopsychiatry. 2000;33:165–8.CrossRefPubMed
59.
go back to reference Mazalouskas M, Jessen T, Varney S, Sutcliffe JS, Veenstra-VanderWeele J, Cook EH, et al. Integrin β3 haploinsufficiency modulates serotonin transport and antidepressant-sensitive behavior in mice. Neuropsychopharmacology. 2015; doi:10.1038/npp.2015.51 Mazalouskas M, Jessen T, Varney S, Sutcliffe JS, Veenstra-VanderWeele J, Cook EH, et al. Integrin β3 haploinsufficiency modulates serotonin transport and antidepressant-sensitive behavior in mice. Neuropsychopharmacology. 2015; doi:10.​1038/​npp.​2015.​51
Metadata
Title
Platelet studies in autism spectrum disorder patients and first-degree relatives
Authors
Nora Bijl
Chantal Thys
Christine Wittevrongel
Wouter De la Marche
Koenraad Devriendt
Hilde Peeters
Chris Van Geet
Kathleen Freson
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2015
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-015-0051-y

Other articles of this Issue 1/2015

Molecular Autism 1/2015 Go to the issue