Skip to main content
Top
Published in: Molecular Autism 1/2015

Open Access 01-12-2015 | Research

Sex differences in cortical volume and gyrification in autism

Authors: Marie Schaer, John Kochalka, Aarthi Padmanabhan, Kaustubh Supekar, Vinod Menon

Published in: Molecular Autism | Issue 1/2015

Login to get access

Abstract

Background

Male predominance is a prominent feature of autism spectrum disorders (ASD), with a reported male to female ratio of 4:1. Because of the overwhelming focus on males, little is known about the neuroanatomical basis of sex differences in ASD. Investigations of sex differences with adequate sample sizes are critical for improving our understanding of the biological mechanisms underlying ASD in females.

Methods

We leveraged the open-access autism brain imaging data exchange (ABIDE) dataset to obtain structural brain imaging data from 53 females with ASD, who were matched with equivalent samples of males with ASD, and their typically developing (TD) male and female peers. Brain images were processed with FreeSurfer to assess three key features of local cortical morphometry: volume, thickness, and gyrification. A whole-brain approach was used to identify significant effects of sex, diagnosis, and sex-by-diagnosis interaction, using a stringent threshold of p < 0.01 to control for false positives. Stability and power analyses were conducted to guide future research on sex differences in ASD.

Results

We detected a main effect of sex in the bilateral superior temporal cortex, driven by greater cortical volume in females compared to males in both the ASD and TD groups. Sex-by-diagnosis interaction was detected in the gyrification of the ventromedial/orbitofrontal prefrontal cortex (vmPFC/OFC). Post-hoc analyses revealed that sex-by-diagnosis interaction was driven by reduced vmPFC/OFC gyrification in males with ASD, compared to females with ASD as well as TD males and females. Finally, stability analyses demonstrated a dramatic drop in the likelihood of observing significant clusters as the sample size decreased, suggesting that previous studies have been largely underpowered. For instance, with a sample of 30 females with ASD (total n = 120), a significant sex-by-diagnosis interaction was only detected in 50 % of the simulated subsamples.

Conclusions

Our results demonstrate that some features of typical sex differences are preserved in the brain of individuals with ASD, while others are not. Sex differences in ASD are associated with cortical regions involved in language and social function, two domains of deficits in the disorder. Stability analyses provide novel quantitative insights into why smaller samples may have previously failed to detect sex differences.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.
2.
go back to reference Baio J. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63(2):1–21. Baio J. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63(2):1–21.
3.
go back to reference Fombonne E. The changing epidemiology of autism. J Appl Res Intellect Disabil. 2005;18:281–94.CrossRef Fombonne E. The changing epidemiology of autism. J Appl Res Intellect Disabil. 2005;18:281–94.CrossRef
6.
7.
go back to reference Baron-Cohen S, Auyeung B, Norgaard-Pedersen B, Hougaard DM, Abdallah MW, Melgaard L, et al. Elevated fetal steroidogenic activity in autism. Mol Psychiatry. 2014. doi:10.1038/mp.2014.48 Baron-Cohen S, Auyeung B, Norgaard-Pedersen B, Hougaard DM, Abdallah MW, Melgaard L, et al. Elevated fetal steroidogenic activity in autism. Mol Psychiatry. 2014. doi:10.​1038/​mp.​2014.​48
12.
go back to reference Beacher FD, Minati L, Baron-Cohen S, Lombardo MV, Lai MC, Gray MA, et al. Autism attenuates sex differences in brain structure: a combined voxel-based morphometry and diffusion tensor imaging study. AJNR Am J Neuroradiol. 2012;33(1):83–9. doi:10.3174/ajnr.A2880.PubMedCrossRef Beacher FD, Minati L, Baron-Cohen S, Lombardo MV, Lai MC, Gray MA, et al. Autism attenuates sex differences in brain structure: a combined voxel-based morphometry and diffusion tensor imaging study. AJNR Am J Neuroradiol. 2012;33(1):83–9. doi:10.​3174/​ajnr.​A2880.PubMedCrossRef
14.
go back to reference Via E, Radua J, Cardoner N, Happe F, Mataix-Cols D. Meta-analysis of gray matter abnormalities in autism spectrum disorder: should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? Arch Gen Psychiatry. 2011;68(4):409–18. doi:10.1001/archgenpsychiatry.2011.27.PubMedCrossRef Via E, Radua J, Cardoner N, Happe F, Mataix-Cols D. Meta-analysis of gray matter abnormalities in autism spectrum disorder: should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? Arch Gen Psychiatry. 2011;68(4):409–18. doi:10.​1001/​archgenpsychiatr​y.​2011.​27.PubMedCrossRef
21.
go back to reference Schaer M, Eliez S. Contribution of structural brain imaging to our understanding of the cortical development. Eur Psy Rev. 2009;2(1):13–6. Schaer M, Eliez S. Contribution of structural brain imaging to our understanding of the cortical development. Eur Psy Rev. 2009;2(1):13–6.
23.
go back to reference Haukvik UK, Schaer M, Nesvag R, McNeil T, Hartberg CB, Jonsson EG, et al. Cortical folding in Broca's area relates to obstetric complications in schizophrenia patients and healthy controls. Psychol Med. 2012;42(6):1329–37. doi:10.1017/S0033291711002315.PubMedCrossRef Haukvik UK, Schaer M, Nesvag R, McNeil T, Hartberg CB, Jonsson EG, et al. Cortical folding in Broca's area relates to obstetric complications in schizophrenia patients and healthy controls. Psychol Med. 2012;42(6):1329–37. doi:10.​1017/​S003329171100231​5.PubMedCrossRef
24.
go back to reference Kesler SR, Vohr B, Schneider KC, Katz KH, Makuch RW, Reiss AL, et al. Increased temporal lobe gyrification in preterm children. Neuropsychologia. 2006;44(3):445–53.PubMedCrossRef Kesler SR, Vohr B, Schneider KC, Katz KH, Makuch RW, Reiss AL, et al. Increased temporal lobe gyrification in preterm children. Neuropsychologia. 2006;44(3):445–53.PubMedCrossRef
25.
go back to reference Gimenez M, Junque C, Vendrell P, Narberhaus A, Bargallo N, Botet F, et al. Abnormal orbitofrontal development due to prematurity. Neurology. 2006;67(10):1818–22.PubMedCrossRef Gimenez M, Junque C, Vendrell P, Narberhaus A, Bargallo N, Botet F, et al. Abnormal orbitofrontal development due to prematurity. Neurology. 2006;67(10):1818–22.PubMedCrossRef
27.
go back to reference Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, et al. Intellectual ability and cortical development in children and adolescents. Nature. 2006;440(7084):676–9.PubMedCrossRef Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, et al. Intellectual ability and cortical development in children and adolescents. Nature. 2006;440(7084):676–9.PubMedCrossRef
28.
go back to reference Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry. 2013. doi:10.1038/mp.2013.78 Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry. 2013. doi:10.​1038/​mp.​2013.​78
33.
go back to reference Stone JL, Merriman B, Cantor RM, Yonan AL, Gilliam TC, Geschwind DH, et al. Evidence for sex-specific risk alleles in autism spectrum disorder. Am J Hum Genet. 2004;75(6):1117–23.PubMedCentralPubMedCrossRef Stone JL, Merriman B, Cantor RM, Yonan AL, Gilliam TC, Geschwind DH, et al. Evidence for sex-specific risk alleles in autism spectrum disorder. Am J Hum Genet. 2004;75(6):1117–23.PubMedCentralPubMedCrossRef
35.
go back to reference Chang SC, Pauls DL, Lange C, Sasanfar R, Santangelo SL. Sex-specific association of a common variant of the XG gene with autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet. 2013;162B(7):742–50. doi:10.1002/ajmg.b.32165.PubMedCrossRef Chang SC, Pauls DL, Lange C, Sasanfar R, Santangelo SL. Sex-specific association of a common variant of the XG gene with autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet. 2013;162B(7):742–50. doi:10.​1002/​ajmg.​b.​32165.PubMedCrossRef
36.
37.
go back to reference Kim KC, Choi CS, Kim JW, Han SH, Cheong JH, Ryu JH, et al. MeCP2 modulates Sex differences in the postsynaptic development of the valproate animal model of autism. Mol Neurobiol. 2014. doi:10.1007/s12035-014-8987-z Kim KC, Choi CS, Kim JW, Han SH, Cheong JH, Ryu JH, et al. MeCP2 modulates Sex differences in the postsynaptic development of the valproate animal model of autism. Mol Neurobiol. 2014. doi:10.​1007/​s12035-014-8987-z
39.
go back to reference Van Wijngaarden-Cremers PJ, van Eeten E, Groen WB, Van Deurzen PA, Oosterling IJ, Van der Gaag RJ. Gender and age differences in the core triad of impairments in autism spectrum disorders: a systematic review and meta-analysis. J Autism Dev Disord. 2014;44(3):627–35. doi:10.1007/s10803-013-1913-9.PubMedCrossRef Van Wijngaarden-Cremers PJ, van Eeten E, Groen WB, Van Deurzen PA, Oosterling IJ, Van der Gaag RJ. Gender and age differences in the core triad of impairments in autism spectrum disorders: a systematic review and meta-analysis. J Autism Dev Disord. 2014;44(3):627–35. doi:10.​1007/​s10803-013-1913-9.PubMedCrossRef
46.
go back to reference Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205–23.PubMedCrossRef Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205–23.PubMedCrossRef
47.
go back to reference Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.PubMedCrossRef Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.PubMedCrossRef
49.
go back to reference Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.PubMedCrossRef Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.PubMedCrossRef
50.
go back to reference Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage. 1999;9(2):179–94.PubMedCrossRef Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage. 1999;9(2):179–94.PubMedCrossRef
52.
go back to reference Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, et al. Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology. 2002;58(5):695–701.PubMedCrossRef Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, et al. Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology. 2002;58(5):695–701.PubMedCrossRef
53.
go back to reference Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage. 2006;32(1):180–94.PubMedCrossRef Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage. 2006;32(1):180–94.PubMedCrossRef
54.
go back to reference Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage. 1999;9(2):195–207.PubMedCrossRef Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage. 1999;9(2):195–207.PubMedCrossRef
56.
go back to reference Hagler Jr DJ, Saygin AP, Sereno MI. Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage. 2006;33(4):1093–103.PubMedCentralPubMedCrossRef Hagler Jr DJ, Saygin AP, Sereno MI. Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage. 2006;33(4):1093–103.PubMedCentralPubMedCrossRef
57.
go back to reference Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.PubMedCrossRef Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.PubMedCrossRef
59.
go back to reference Bornstein MH, Hahn C, Haynes OM. Specific and general language performance across early childhood: stability and gender considerations. First Language. 2004;24(3):267–304.CrossRef Bornstein MH, Hahn C, Haynes OM. Specific and general language performance across early childhood: stability and gender considerations. First Language. 2004;24(3):267–304.CrossRef
60.
go back to reference Kansaku K, Yamaura A, Kitazawa S. Sex differences in lateralization revealed in the posterior language areas. Cereb Cortex. 2000;10(9):866–72.PubMedCrossRef Kansaku K, Yamaura A, Kitazawa S. Sex differences in lateralization revealed in the posterior language areas. Cereb Cortex. 2000;10(9):866–72.PubMedCrossRef
61.
go back to reference Baxter LC, Saykin AJ, Flashman LA, Johnson SC, Guerin SJ, Babcock DR, et al. Sex differences in semantic language processing: a functional MRI study. Brain Lang. 2003;84(2):264–72.PubMedCrossRef Baxter LC, Saykin AJ, Flashman LA, Johnson SC, Guerin SJ, Babcock DR, et al. Sex differences in semantic language processing: a functional MRI study. Brain Lang. 2003;84(2):264–72.PubMedCrossRef
64.
go back to reference Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K. The ontogeny of human gyrification. Cereb Cortex. 1995;5(1):56–63.PubMedCrossRef Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K. The ontogeny of human gyrification. Cereb Cortex. 1995;5(1):56–63.PubMedCrossRef
66.
go back to reference Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage. 2001;14(3):685–700. doi:10.1006/nimg.2001.0857.PubMedCrossRef Good CD, Johnsrude I, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage. 2001;14(3):685–700. doi:10.​1006/​nimg.​2001.​0857.PubMedCrossRef
67.
go back to reference Sowell ER, Trauner DA, Gamst A, Jernigan TL. Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev Med Child Neurol. 2002;44(1):4–16.PubMedCrossRef Sowell ER, Trauner DA, Gamst A, Jernigan TL. Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev Med Child Neurol. 2002;44(1):4–16.PubMedCrossRef
68.
go back to reference Harasty J, Double KL, Halliday GM, Kril JJ, McRitchie DA. Language-associated cortical regions are proportionally larger in the female brain. Arch Neurol. 1997;54(2):171–6.PubMedCrossRef Harasty J, Double KL, Halliday GM, Kril JJ, McRitchie DA. Language-associated cortical regions are proportionally larger in the female brain. Arch Neurol. 1997;54(2):171–6.PubMedCrossRef
69.
go back to reference Schlaepfer TE, Harris GJ, Tien AY, Peng L, Lee S, Pearlson GD. Structural differences in the cerebral cortex of healthy female and male subjects: a magnetic resonance imaging study. Psychiatry Res. 1995;61(3):129–35.PubMedCrossRef Schlaepfer TE, Harris GJ, Tien AY, Peng L, Lee S, Pearlson GD. Structural differences in the cerebral cortex of healthy female and male subjects: a magnetic resonance imaging study. Psychiatry Res. 1995;61(3):129–35.PubMedCrossRef
71.
go back to reference Lai MC, Lombardo MV, Ecker C, Chakrabarti B, Suckling J, Bullmore ET, et al. Neuroanatomy of individual differences in language in adult males with autism. Cereb Cortex. 2014. doi:10.1093/cercor/bhu211 Lai MC, Lombardo MV, Ecker C, Chakrabarti B, Suckling J, Bullmore ET, et al. Neuroanatomy of individual differences in language in adult males with autism. Cereb Cortex. 2014. doi:10.​1093/​cercor/​bhu211
72.
75.
go back to reference Harrop C, Shire S, Gulsrud A, Chang YC, Ishijima E, Lawton K, et al. Does gender influence core deficits in ASD? An investigation into social-communication and play of girls and boys with ASD. J Autism Dev Disord. 2014. doi:10.1007/s10803-014-2234-3.PubMed Harrop C, Shire S, Gulsrud A, Chang YC, Ishijima E, Lawton K, et al. Does gender influence core deficits in ASD? An investigation into social-communication and play of girls and boys with ASD. J Autism Dev Disord. 2014. doi:10.​1007/​s10803-014-2234-3.PubMed
78.
go back to reference Kopp S, Gillberg C. Girls with social deficits and learning problems: autism, atypical asperger syndrome or a variant of these conditions. Europeand Child Adolescent Psychiatry. 1992;1(2):82–99.CrossRef Kopp S, Gillberg C. Girls with social deficits and learning problems: autism, atypical asperger syndrome or a variant of these conditions. Europeand Child Adolescent Psychiatry. 1992;1(2):82–99.CrossRef
79.
go back to reference McLennan JD, Lord C, Schopler E. Sex differences in higher functioning people with autism. J Autism Dev Disord. 1993;23(2):217–27.PubMedCrossRef McLennan JD, Lord C, Schopler E. Sex differences in higher functioning people with autism. J Autism Dev Disord. 1993;23(2):217–27.PubMedCrossRef
83.
go back to reference Vandekerckhove M, Plessers M, Van Mieghem A, Beeckmans K, Van Acker F, Maex R, et al. Impaired facial emotion recognition in patients with ventromedial prefrontal hypoperfusion. Neuropsychology. 2014;28(4):605–12. doi:10.1037/neu0000057.PubMedCrossRef Vandekerckhove M, Plessers M, Van Mieghem A, Beeckmans K, Van Acker F, Maex R, et al. Impaired facial emotion recognition in patients with ventromedial prefrontal hypoperfusion. Neuropsychology. 2014;28(4):605–12. doi:10.​1037/​neu0000057.PubMedCrossRef
84.
go back to reference Kohls G, Chevallier C, Troiani V, Schultz RT. Social 'wanting' dysfunction in autism: neurobiological underpinnings and treatment implications. J Neurodev. 2012;4(1):10. doi:10.1186/1866-1955-4-10.CrossRef Kohls G, Chevallier C, Troiani V, Schultz RT. Social 'wanting' dysfunction in autism: neurobiological underpinnings and treatment implications. J Neurodev. 2012;4(1):10. doi:10.​1186/​1866-1955-4-10.CrossRef
86.
go back to reference Klin A, Jones W, Schultz R, Volkmar F, Cohen D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry. 2002;59(9):809–16.PubMedCrossRef Klin A, Jones W, Schultz R, Volkmar F, Cohen D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry. 2002;59(9):809–16.PubMedCrossRef
87.
90.
go back to reference Richey JA, Rittenberg A, Hughes L, Damiano CR, Sabatino A, Miller S, et al. Common and distinct neural features of social and non-social reward processing in autism and social anxiety disorder. Soc Cogn Affect Neurosci. 2014;9(3):367–77. doi:10.1093/scan/nss146.PubMedCentralPubMedCrossRef Richey JA, Rittenberg A, Hughes L, Damiano CR, Sabatino A, Miller S, et al. Common and distinct neural features of social and non-social reward processing in autism and social anxiety disorder. Soc Cogn Affect Neurosci. 2014;9(3):367–77. doi:10.​1093/​scan/​nss146.PubMedCentralPubMedCrossRef
91.
go back to reference Uddin LQ, Supekar K, Lynch CJ, Cheng KM, Odriozola P, Barth ME et al. Brain state differentiation and behavioral inflexibility in autism†. Cereb Cortex. 2014. doi:10.1093/cercor/bhu161. Uddin LQ, Supekar K, Lynch CJ, Cheng KM, Odriozola P, Barth ME et al. Brain state differentiation and behavioral inflexibility in autism. Cereb Cortex. 2014. doi:10.​1093/​cercor/​bhu161.
93.
go back to reference von dem Hagen EA, Stoyanova RS, Baron-Cohen S, Calder AJ. Reduced functional connectivity within and between 'social' resting state networks in autism spectrum conditions. Soc Cogn Affect Neurosci. 2013;8(6):694–701. doi:10.1093/scan/nss053.CrossRef von dem Hagen EA, Stoyanova RS, Baron-Cohen S, Calder AJ. Reduced functional connectivity within and between 'social' resting state networks in autism spectrum conditions. Soc Cogn Affect Neurosci. 2013;8(6):694–701. doi:10.​1093/​scan/​nss053.CrossRef
95.
go back to reference Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW, et al. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J Neurosci. 2014;34(25):8488–98. doi:10.1523/JNEUROSCI.0391-14.2014.PubMedCrossRef Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW, et al. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J Neurosci. 2014;34(25):8488–98. doi:10.​1523/​JNEUROSCI.​0391-14.​2014.PubMedCrossRef
98.
go back to reference Cauda F, Geda E, Sacco K, D'Agata F, Duca S, Geminiani G, et al. Grey matter abnormality in autism spectrum disorder: an activation likelihood estimation meta-analysis study. J Neurol Neurosurg Psychiatry. 2011;82(12):1304–13. doi:10.1136/jnnp.2010.239111.PubMedCrossRef Cauda F, Geda E, Sacco K, D'Agata F, Duca S, Geminiani G, et al. Grey matter abnormality in autism spectrum disorder: an activation likelihood estimation meta-analysis study. J Neurol Neurosurg Psychiatry. 2011;82(12):1304–13. doi:10.​1136/​jnnp.​2010.​239111.PubMedCrossRef
Metadata
Title
Sex differences in cortical volume and gyrification in autism
Authors
Marie Schaer
John Kochalka
Aarthi Padmanabhan
Kaustubh Supekar
Vinod Menon
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2015
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-015-0035-y

Other articles of this Issue 1/2015

Molecular Autism 1/2015 Go to the issue