Skip to main content
Top
Published in: Molecular Autism 1/2015

Open Access 01-12-2015 | Research

The association of GPR85 with PSD-95-neuroligin complex and autism spectrum disorder: a molecular analysis

Authors: Eriko Fujita-Jimbo, Yuko Tanabe, Zhiling Yu, Karin Kojima, Masato Mori, Hong Li, Sadahiko Iwamoto, Takanori Yamagata, Mariko Y Momoi, Takashi Momoi

Published in: Molecular Autism | Issue 1/2015

Login to get access

Abstract

Background

Autism spectrum disorder (ASD) has a complex genetic etiology. Some symptoms and mutated genes, including neuroligin (NLGN), neurexin (NRXN), and SH3 and multiple ankyrin repeat domains protein (SHANK), are shared by schizophrenia and ASD. Little is known about the molecular pathogenesis of ASD. One of the possible molecular pathogenesis is an imbalance of excitatory and inhibitory receptors linked with the NLGN-PSD-95-SHANK complex via postsynaptic density protein/Drosophila disc large tumor suppressor/zonula occludens-1 protein (PDZ) binding. In the present study, we focused on GPR85 as a candidate gene for ASD because the C-terminal amino acid sequence of GPR85 [Thr-Cys-Val-Ile (YCVI)] is classified as a type II PDZ-binding motif, and GPR85 is a risk factor for schizophrenia. GPR85 is an orphan receptor that regulates neural and synaptic plasticity and modulates diverse behaviors, including learning and memory. While searching for molecules that associate with GPR85, we found that GPR85 was associated with postsynaptic density protein (PSD)-95 linked with NLGN in the brain.

Methods

We examined the proteins that associate with the C-terminal sequence of GPR85 by pull-down assay and immunoblot analysis and searched for a mutation of the GPR85 gene in patients with ASD. We used immunostaining to examine the intracellular localization of mutated GPR85 and its influence on the morphology of cells and neurons.

Results

The C-terminal sequence of GPR85 interacted with PSD-95 at PDZ1, while NLGN interacted with PSD-95 at PDZ3. Two male patients with ASD from independent Japanese families possessed inherited missense mutations at conserved sites in GPR85: one had T1033C (M152T) and the other had G1239T (V221L). These mutations were located in a domain related to G protein interaction and signal transduction. In contrast to wild-type GPR85, mutated GPR85 was more preferentially accumulated, causing endoplasmic reticulum stress, and disturbed the dendrite formation of hippocampal neurons.

Conclusions

GPR85 associated with the PSD-95 linked with NLGN, which is related to ASD. GPR85 carrying the mutations detected in ASD patients disturbed dendrite formation that could be the candidate for molecular pathogenesis of ASD through the associated NLGN-PSD-95 receptor complex.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet. 2003;34:27–9.CrossRefPubMedCentralPubMed Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet. 2003;34:27–9.CrossRefPubMedCentralPubMed
2.
go back to reference Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39:25–7.CrossRefPubMedCentralPubMed Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39:25–7.CrossRefPubMedCentralPubMed
3.
go back to reference Bakkaloglu B, O’Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM, et al. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet. 2008;82:165–73.CrossRefPubMedCentralPubMed Bakkaloglu B, O’Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM, et al. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet. 2008;82:165–73.CrossRefPubMedCentralPubMed
4.
go back to reference Zhiling Y, Fujita E, Tanabe Y, Yamagata T, Momoi T, Momoi MY. Mutations in the gene encoding CADM1 are associated with autism spectrum disorder. Biochem Biophys Res Commun. 2008;377:926–9.CrossRefPubMed Zhiling Y, Fujita E, Tanabe Y, Yamagata T, Momoi T, Momoi MY. Mutations in the gene encoding CADM1 are associated with autism spectrum disorder. Biochem Biophys Res Commun. 2008;377:926–9.CrossRefPubMed
5.
go back to reference Lisé MF, El-Husseini A. The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci. 2006;63:1833–49.CrossRefPubMed Lisé MF, El-Husseini A. The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci. 2006;63:1833–49.CrossRefPubMed
6.
go back to reference Nguyen T, Südhof TC. Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules. J Biol Chem. 1997;272:26032–9.CrossRefPubMed Nguyen T, Südhof TC. Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules. J Biol Chem. 1997;272:26032–9.CrossRefPubMed
7.
go back to reference Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, et al. Binding of neuroligins to PSD-95. Science. 1997;277:1511–5.CrossRefPubMed Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, et al. Binding of neuroligins to PSD-95. Science. 1997;277:1511–5.CrossRefPubMed
8.
go back to reference Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, et al. The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A. 2003;100:4903–8.CrossRefPubMedCentralPubMed Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, et al. The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A. 2003;100:4903–8.CrossRefPubMedCentralPubMed
9.
go back to reference Fujita-Jimbo E, Yu ZL, Li H, Yamagata T, Mori M, Momoi T, et al. Mutation in Parkinson disease-associated, G-protein-coupled receptor 37 (GPR37/Pael) is related to autism spectrum disorder. PLoS One. 2012;7:e51155.CrossRefPubMedCentralPubMed Fujita-Jimbo E, Yu ZL, Li H, Yamagata T, Mori M, Momoi T, et al. Mutation in Parkinson disease-associated, G-protein-coupled receptor 37 (GPR37/Pael) is related to autism spectrum disorder. PLoS One. 2012;7:e51155.CrossRefPubMedCentralPubMed
10.
go back to reference Gauthier J, Siddiqui TJ, Huashan P, Yokomaku D, Hamdan FF, Champagne N, et al. Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Hum Genet. 2011;130:563–73.CrossRefPubMedCentralPubMed Gauthier J, Siddiqui TJ, Huashan P, Yokomaku D, Hamdan FF, Champagne N, et al. Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Hum Genet. 2011;130:563–73.CrossRefPubMedCentralPubMed
11.
go back to reference Sun C, Cheng MC, Qin R, Liao DL, Chen TT, Koong FJ, et al. Identification and functional characterization of rare mutations of the neuroligin-2 gene (NLGN2) associated with schizophrenia. Hum Mol Genet. 2011;20:3042–51.CrossRefPubMedCentralPubMed Sun C, Cheng MC, Qin R, Liao DL, Chen TT, Koong FJ, et al. Identification and functional characterization of rare mutations of the neuroligin-2 gene (NLGN2) associated with schizophrenia. Hum Mol Genet. 2011;20:3042–51.CrossRefPubMedCentralPubMed
12.
go back to reference Sand P, Langguth B, Hajak G, Perna M, Prikryl R, Kucerova H, et al. Screening for Neuroligin 4 (NLGN4) truncating and transmembrane domain mutations in schizophrenia. Schizophr Res. 2006;82:277–8.CrossRefPubMed Sand P, Langguth B, Hajak G, Perna M, Prikryl R, Kucerova H, et al. Screening for Neuroligin 4 (NLGN4) truncating and transmembrane domain mutations in schizophrenia. Schizophr Res. 2006;82:277–8.CrossRefPubMed
13.
go back to reference Gauthier J, Champagne N, Lafrenière RG, Xiong L, Spiegelman D, Brustein E, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci U S A. 2010;27:7863–8.CrossRef Gauthier J, Champagne N, Lafrenière RG, Xiong L, Spiegelman D, Brustein E, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci U S A. 2010;27:7863–8.CrossRef
14.
go back to reference Posey DJ, Erickson CA, McDougle CJ. Developing drugs for core social and communication impairment in autism. Child Adolesc Psychiatr Clin N Am. 2008;17:787–801.CrossRefPubMedCentralPubMed Posey DJ, Erickson CA, McDougle CJ. Developing drugs for core social and communication impairment in autism. Child Adolesc Psychiatr Clin N Am. 2008;17:787–801.CrossRefPubMedCentralPubMed
15.
go back to reference Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506:179–84.CrossRefPubMedCentralPubMed Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506:179–84.CrossRefPubMedCentralPubMed
16.
go back to reference Hellebrand S, Schaller HC, Wittenberger T. The brain-specific G-protein coupled receptor GPR85 with identical protein sequence in man and mouse maps to human chromosome 7q31. Biochim Biophys Acta. 2000;1493:269–72.CrossRefPubMed Hellebrand S, Schaller HC, Wittenberger T. The brain-specific G-protein coupled receptor GPR85 with identical protein sequence in man and mouse maps to human chromosome 7q31. Biochim Biophys Acta. 2000;1493:269–72.CrossRefPubMed
17.
go back to reference Marazziti D, Golini E, Gallo A, Lombardi MS, Matteoni R, Tocchini-Valentini GP. Cloning of GPR37, a gene located on chromosome 7 encoding a putative G-protein-coupled peptide receptor, from a human frontal brain EST library. Genomics. 1997;45:68–77.CrossRefPubMed Marazziti D, Golini E, Gallo A, Lombardi MS, Matteoni R, Tocchini-Valentini GP. Cloning of GPR37, a gene located on chromosome 7 encoding a putative G-protein-coupled peptide receptor, from a human frontal brain EST library. Genomics. 1997;45:68–77.CrossRefPubMed
18.
go back to reference Matsumoto M, Straub RE, Marenco S, Nicodemus KK, Matsumoto S, Fujikawa A, et al. The evolutionarily conserved G protein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia. Proc Natl Acad Sci U S A. 2008;105:6133–8.CrossRefPubMedCentralPubMed Matsumoto M, Straub RE, Marenco S, Nicodemus KK, Matsumoto S, Fujikawa A, et al. The evolutionarily conserved G protein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia. Proc Natl Acad Sci U S A. 2008;105:6133–8.CrossRefPubMedCentralPubMed
19.
go back to reference Matsumoto M, Saito T, Takasaki J, Kamohara M, Sugimoto T, Kobayashi M, et al. An evolutionarily conserved G-protein coupled receptor family, SREB, expressed in the central nervous system. Biochem Biophys Res Commun. 2000;272:576–82.CrossRefPubMed Matsumoto M, Saito T, Takasaki J, Kamohara M, Sugimoto T, Kobayashi M, et al. An evolutionarily conserved G-protein coupled receptor family, SREB, expressed in the central nervous system. Biochem Biophys Res Commun. 2000;272:576–82.CrossRefPubMed
20.
go back to reference Leng N, Gu G, Simerly RB, Spindel ER. Molecular cloning and characterization of two putative G protein-coupled receptors which are highly expressed in the central nervous system. Brain Res Mol Brain Res. 1999;69:73–83.CrossRefPubMed Leng N, Gu G, Simerly RB, Spindel ER. Molecular cloning and characterization of two putative G protein-coupled receptors which are highly expressed in the central nervous system. Brain Res Mol Brain Res. 1999;69:73–83.CrossRefPubMed
21.
go back to reference Jeleń F, Oleksy A, Smietana K, Otlewski J. PDZ domains - common players in the cell signaling. Acta Biochim Pol. 2003;50:985–1017.PubMed Jeleń F, Oleksy A, Smietana K, Otlewski J. PDZ domains - common players in the cell signaling. Acta Biochim Pol. 2003;50:985–1017.PubMed
22.
go back to reference Fujita E, Dai H, Tanabe Y, Zhiling Y, Yamagata T, Miyakawa T, et al. Autism spectrum disorder is related to endoplasmic reticulum stress induced by mutations in the synaptic cell adhesion molecule, CADM1. Cell Death Dis. 2010;1:e47.CrossRefPubMedCentralPubMed Fujita E, Dai H, Tanabe Y, Zhiling Y, Yamagata T, Miyakawa T, et al. Autism spectrum disorder is related to endoplasmic reticulum stress induced by mutations in the synaptic cell adhesion molecule, CADM1. Cell Death Dis. 2010;1:e47.CrossRefPubMedCentralPubMed
23.
go back to reference Odaka A, Tsukahara T, Momoi M, Momoi T. c-jun inhibited the alternative splicing of neuron-specific amyloid precursor protein, but stimulated the non-neuron type one in P19 EC cells. Biochem Biophys Res Commun. 1995;206:821–8.CrossRefPubMed Odaka A, Tsukahara T, Momoi M, Momoi T. c-jun inhibited the alternative splicing of neuron-specific amyloid precursor protein, but stimulated the non-neuron type one in P19 EC cells. Biochem Biophys Res Commun. 1995;206:821–8.CrossRefPubMed
24.
go back to reference Fujita E, Tanabe Y, Imhof BA, Momoi MY, Momoi T. A complex of synaptic adhesion molecule CADM1, a molecule related to autism spectrum disorder, with MUPP1 in the cerebellum. J Neurochem. 2013;123:886–94.CrossRef Fujita E, Tanabe Y, Imhof BA, Momoi MY, Momoi T. A complex of synaptic adhesion molecule CADM1, a molecule related to autism spectrum disorder, with MUPP1 in the cerebellum. J Neurochem. 2013;123:886–94.CrossRef
25.
go back to reference Kouroku Y, Urase K, Fujita E, Isahara K, Ohsawa Y, Uchiyama Y, et al. Detection of activated Caspase-3 by a cleavage site-directed antiserum during naturally occurring DRG neurons apoptosis. Biochem Biophys Res Commun. 1998;247:780–4.CrossRefPubMed Kouroku Y, Urase K, Fujita E, Isahara K, Ohsawa Y, Uchiyama Y, et al. Detection of activated Caspase-3 by a cleavage site-directed antiserum during naturally occurring DRG neurons apoptosis. Biochem Biophys Res Commun. 1998;247:780–4.CrossRefPubMed
26.
go back to reference Huguet G, Ey E, Bourgeron T. The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Hum Genet. 2013;14:191–213.CrossRefPubMed Huguet G, Ey E, Bourgeron T. The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Hum Genet. 2013;14:191–213.CrossRefPubMed
27.
go back to reference Li H, Yamagata T, Mori M, Yasuhara A, Momoi MY. Mutation analysis of methyl-CpG binding protein family genes in autistic patients. Brain Dev. 2005;27:321–5.CrossRefPubMed Li H, Yamagata T, Mori M, Yasuhara A, Momoi MY. Mutation analysis of methyl-CpG binding protein family genes in autistic patients. Brain Dev. 2005;27:321–5.CrossRefPubMed
28.
go back to reference Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.CrossRefPubMed Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.CrossRefPubMed
29.
go back to reference Zwaigenbaum L, Thurm A, Stone W, Baranek G, Bryson S, Iverson J, et al. Studying the emergence of autism spectrum disorders in high-risk infants: methodological and practical issues. J Autism Dev Disord. 2007;37:466–80.CrossRefPubMed Zwaigenbaum L, Thurm A, Stone W, Baranek G, Bryson S, Iverson J, et al. Studying the emergence of autism spectrum disorders in high-risk infants: methodological and practical issues. J Autism Dev Disord. 2007;37:466–80.CrossRefPubMed
30.
go back to reference Poliak S, Matlis S, Ullmer C, Scherer SS, Peles E. Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol. 2002;159:361–72.CrossRefPubMedCentralPubMed Poliak S, Matlis S, Ullmer C, Scherer SS, Peles E. Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol. 2002;159:361–72.CrossRefPubMedCentralPubMed
Metadata
Title
The association of GPR85 with PSD-95-neuroligin complex and autism spectrum disorder: a molecular analysis
Authors
Eriko Fujita-Jimbo
Yuko Tanabe
Zhiling Yu
Karin Kojima
Masato Mori
Hong Li
Sadahiko Iwamoto
Takanori Yamagata
Mariko Y Momoi
Takashi Momoi
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2015
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-015-0012-5

Other articles of this Issue 1/2015

Molecular Autism 1/2015 Go to the issue