Skip to main content
Top
Published in: Allergy, Asthma & Clinical Immunology 1/2018

Open Access 01-12-2018 | Case report

Hematopoietic cell transplantation for asymptomatic X-linked lymphoproliferative syndrome type 1

Authors: Akihiro Tamura, Suguru Uemura, Nobuyuki Yamamoto, Atsuro Saito, Aiko Kozaki, Kenji Kishimoto, Toshiaki Ishida, Daiichiro Hasegawa, Haruka Hiroki, Tsubasa Okano, Kohsuke Imai, Tomohiro Morio, Hirokazu Kanegane, Yoshiyuki Kosaka

Published in: Allergy, Asthma & Clinical Immunology | Issue 1/2018

Login to get access

Abstract

Background

X-linked lymphoproliferative disease type 1 (XLP1) is a rare primary immune deficiency, which is caused by SH2D1A gene mutations. XLP1 is commonly associated with Epstein–Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis, hypogammaglobulinemia, and/or lymphoma. The only curative treatment for XLP1 is allogeneic hematopoietic cell transplantation. However, published data detailing the clinical course of, and indications for, allogeneic hematopoietic cell transplantation in asymptomatic patients with XLP1 is lacking. Although relevant family history could be useful in identifying patients with XLP1 before disease onset, no guidelines have been established on the management of asymptomatic patients with XLP1. Therefore, clinicians and families face dilemmas in balancing between the risk of waiting for the disease onset, and the risk of transplant-related mortality associated with allogeneic hematopoietic cell transplantation, which is often performed at a very young age. We first describe the detailed clinical course of an asymptomatic patient with XLP1 who successfully underwent allogeneic hematopoietic cell transplantation.

Case presentation

A boy was born at 39 weeks of gestation, weighing 3016 g at birth. He appeared fine, but he underwent genetic testing because his maternal cousin had XLP1. He was found to have a novel c.207_208insC (p.Pro70ProfsX4) mutation in exon 3 of SH2D1A, which was also found in his cousin. There was no HLA-identical donor in his family. Immunoglobulin was administered monthly to prevent EBV infection while searching for an alternative donor. He underwent allogeneic bone marrow transplantation (BMT) from an allele HLA 8/8 fully matched, unrelated donor with a reduced-intensity conditioning (RIC) regimen consisting of fludarabine, melphalan, and low-dose total body irradiation (TBI) at 20 months of age. The patient has been doing well for 2 years post transplantation and maintaining complete donor chimerism without any evidence of chronic graft versus host disease.

Conclusions

We describe a case of an asymptomatic patient with XLP1, who successfully underwent unrelated BMT with RIC regimen consisting of fludarabine, melphalan, and 3 Gy TBI. That was well tolerated and successfully generated complete chimerism in every subpopulation. This case delineates the option of allogeneic hematopoietic cell transplantation even in asymptomatic patients with XLP1.
Literature
1.
go back to reference Purtilo DT, Grierson HL. Methods of detection of new families with X-linked lymphoproliferative disease. Cancer Genet Cytogenet. 1991;51:143–53.CrossRef Purtilo DT, Grierson HL. Methods of detection of new families with X-linked lymphoproliferative disease. Cancer Genet Cytogenet. 1991;51:143–53.CrossRef
2.
go back to reference Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A, et al. Correlation of mutations of the SH2D1A gene and Epstein–Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood. 2000;96:3118–25.PubMed Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A, et al. Correlation of mutations of the SH2D1A gene and Epstein–Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood. 2000;96:3118–25.PubMed
3.
go back to reference Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395:462–9.CrossRef Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395:462–9.CrossRef
4.
go back to reference Latour S, Roncagalli R, Chen R, Bakinowski M, Shi X, Schwartzberg PL, et al. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nat Cell Biol. 2003;5:149–54.CrossRef Latour S, Roncagalli R, Chen R, Bakinowski M, Shi X, Schwartzberg PL, et al. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nat Cell Biol. 2003;5:149–54.CrossRef
5.
go back to reference Kanegane H, Yang X, Zhao M, Yamato K, Inoue M, Hamamoto K, et al. Clinical features and outcome of X-linked lymphoproliferative syndrome type 1 (SAP deficiency) in Japan identified by the combination of flow cytometric assay and genetic analysis. Pediatr Allergy Immunol. 2012;23:488–93.CrossRef Kanegane H, Yang X, Zhao M, Yamato K, Inoue M, Hamamoto K, et al. Clinical features and outcome of X-linked lymphoproliferative syndrome type 1 (SAP deficiency) in Japan identified by the combination of flow cytometric assay and genetic analysis. Pediatr Allergy Immunol. 2012;23:488–93.CrossRef
6.
go back to reference Rezaei N, Mahmoudi E, Aghamohammadi A, Das R, Nichols KE. X-linked lymphoproliferative syndrome: a genetic condition typified by the triad of infection, immunodeficiency and lymphoma. Br J Haematol. 2011;152:13–30.CrossRef Rezaei N, Mahmoudi E, Aghamohammadi A, Das R, Nichols KE. X-linked lymphoproliferative syndrome: a genetic condition typified by the triad of infection, immunodeficiency and lymphoma. Br J Haematol. 2011;152:13–30.CrossRef
7.
go back to reference Panchal N, Booth C, Cannons JL, Schwartzberg PL. X-linked lymphoproliferative disease type 1: a clinical and molecular perspective. Front Immunol. 2018;9:666.CrossRef Panchal N, Booth C, Cannons JL, Schwartzberg PL. X-linked lymphoproliferative disease type 1: a clinical and molecular perspective. Front Immunol. 2018;9:666.CrossRef
8.
go back to reference Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of disease. Blood. 2011;117:53–62.CrossRef Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of disease. Blood. 2011;117:53–62.CrossRef
9.
go back to reference Sumazaki R, Kanegane H, Osaki M, Fukushima T, Tsuchida M, Matsukura H, et al. SH2D1A mutations in Japanese males with severe Epstein–Barr virus-associated illnesses. Blood. 2001;98:1268–70.CrossRef Sumazaki R, Kanegane H, Osaki M, Fukushima T, Tsuchida M, Matsukura H, et al. SH2D1A mutations in Japanese males with severe Epstein–Barr virus-associated illnesses. Blood. 2001;98:1268–70.CrossRef
10.
go back to reference Okano H, Nishikawa T, Watanabe E, Watanabe T, Takashima T, Yeh TW, et al. Maternal T and B cell engraftment in two cases of X-linked severe combined immunodeficiency with IgG gammopathy. Clin Immunol. 2017;183:112–20.CrossRef Okano H, Nishikawa T, Watanabe E, Watanabe T, Takashima T, Yeh TW, et al. Maternal T and B cell engraftment in two cases of X-linked severe combined immunodeficiency with IgG gammopathy. Clin Immunol. 2017;183:112–20.CrossRef
11.
go back to reference Tabata Y, Villanueva J, Lee SM, Zhang K, Kanegane H, Miyawaki T, et al. Rapid detection of intracellular SH2D1A protein in cytotoxic lymphocytes from patients with X-linked lymphoproliferative disease and their family members. Blood. 2005;105:3066–71.CrossRef Tabata Y, Villanueva J, Lee SM, Zhang K, Kanegane H, Miyawaki T, et al. Rapid detection of intracellular SH2D1A protein in cytotoxic lymphocytes from patients with X-linked lymphoproliferative disease and their family members. Blood. 2005;105:3066–71.CrossRef
12.
go back to reference Zhao M, Kanegane H, Kobayashi C, Nakazawa Y, Ishii E, Kasai M, et al. Early and rapid detection of X-linked lymphoproliferative syndrome with SH2D1A mutations by flow cytometry. Cytom B Clin Cytom. 2011;80:8–13.CrossRef Zhao M, Kanegane H, Kobayashi C, Nakazawa Y, Ishii E, Kasai M, et al. Early and rapid detection of X-linked lymphoproliferative syndrome with SH2D1A mutations by flow cytometry. Cytom B Clin Cytom. 2011;80:8–13.CrossRef
13.
go back to reference Kanegane H, Hoshino A, Okano T, Yasumi T, Wada T, Takada H, et al. Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int. 2018;67:43–54.CrossRef Kanegane H, Hoshino A, Okano T, Yasumi T, Wada T, Takada H, et al. Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int. 2018;67:43–54.CrossRef
14.
go back to reference Agarwal S, Cunningham-Rundles C. Assessment and clinical interpretation of reduced IgG values. Ann Allergy Asthma Immunol. 2007;99(3):281–3.CrossRef Agarwal S, Cunningham-Rundles C. Assessment and clinical interpretation of reduced IgG values. Ann Allergy Asthma Immunol. 2007;99(3):281–3.CrossRef
15.
go back to reference Okano T, Tsujita Y, Kanegane H, Mitsui-Sekitani K, Tanita K, Miyamoto S, et al. Droplet digital PCR-based chimerism analysis for primary immunodeficiency diseases. J Clin Immunol. 2018;38:300–6.CrossRef Okano T, Tsujita Y, Kanegane H, Mitsui-Sekitani K, Tanita K, Miyamoto S, et al. Droplet digital PCR-based chimerism analysis for primary immunodeficiency diseases. J Clin Immunol. 2018;38:300–6.CrossRef
17.
go back to reference Lankester AC, Visser LF, Hartwig NG, Bredius RG, Gaspar HB, van der Burg M, et al. Allogeneic stem cell transplantation in X-linked lymphoproliferative disease: two cases in one family and review of the literature. Bone Marrow Transplant. 2005;36:99–105.CrossRef Lankester AC, Visser LF, Hartwig NG, Bredius RG, Gaspar HB, van der Burg M, et al. Allogeneic stem cell transplantation in X-linked lymphoproliferative disease: two cases in one family and review of the literature. Bone Marrow Transplant. 2005;36:99–105.CrossRef
18.
go back to reference Marsh RA, Bleesing JJ, Chandrakasan S, Jordan MB, Davies SM, Filipovich AH. Reduced-intensity conditioning hematopoietic cell transplantation is an effective treatment for patients with SLAM-associated protein deficiency/X-linked lymphoproliferative disease type 1. Biol Blood Marrow Transplant. 2014;20:1641–5.CrossRef Marsh RA, Bleesing JJ, Chandrakasan S, Jordan MB, Davies SM, Filipovich AH. Reduced-intensity conditioning hematopoietic cell transplantation is an effective treatment for patients with SLAM-associated protein deficiency/X-linked lymphoproliferative disease type 1. Biol Blood Marrow Transplant. 2014;20:1641–5.CrossRef
Metadata
Title
Hematopoietic cell transplantation for asymptomatic X-linked lymphoproliferative syndrome type 1
Authors
Akihiro Tamura
Suguru Uemura
Nobuyuki Yamamoto
Atsuro Saito
Aiko Kozaki
Kenji Kishimoto
Toshiaki Ishida
Daiichiro Hasegawa
Haruka Hiroki
Tsubasa Okano
Kohsuke Imai
Tomohiro Morio
Hirokazu Kanegane
Yoshiyuki Kosaka
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Allergy, Asthma & Clinical Immunology / Issue 1/2018
Electronic ISSN: 1710-1492
DOI
https://doi.org/10.1186/s13223-018-0306-1

Other articles of this Issue 1/2018

Allergy, Asthma & Clinical Immunology 1/2018 Go to the issue