Skip to main content
Top
Published in: Allergy, Asthma & Clinical Immunology 1/2018

Open Access 01-12-2018 | Research

Common allergies in urban adolescents and their relationships with asthma control and healthcare utilization

Authors: Hyekyun Rhee, Tanzy Love, Donald Harrington, Annette Grape

Published in: Allergy, Asthma & Clinical Immunology | Issue 1/2018

Login to get access

Abstract

Background

Urban adolescents suffer a disproportionate burden of asthma morbidity, often in association with allergies. Literature is limited on comparing various types of allergies regarding prevalence and associations with asthma morbidity in urban dwelling adolescents. The purpose of this study was to examine the prevalence of common allergies reported by urban adolescents and to assess their relationships to healthcare utilization and asthma control.

Methods

Study participants included 313 urban adolescents (12–20 years of age) with persistent asthma who were recruited from three states in the United States. Self-report data were collected on nine indoor and outdoor allergies, healthcare utilization, and asthma exacerbation. Logistic regressions and zero-inflated Poisson regressions were conducted to examine the relationships between allergies and asthma morbidity.

Results

The mean age of participants was 14.58 (± 1.97) and 52% were female, and 79% were black. Seventy-three percent (n = 229) reported one or more allergies. Dust mite and grass allergies were most common, each reported by 50%. The prevalence of pest allergies (cockroach and mouse) was 27.5% and 19%, respectively. Those with pest allergies were more likely to report ED visits (cockroach- Odds Ratio (OR) = 2.16, 95% CI 1.18–3.94, p = .01; mouse- OR = 2.13, 95% CI 1.09–4.07, p = .02), specialist visits (cockroach-OR = 2.69, 95% CI 1.60–4.54, p < .001; mouse- OR = 2.06, 95% CI 1.15–3.68, p = .01) and asthma exacerbation (cockroach-OR = 2.17, 95% CI 1.26–3.74, p < .001; mouse- OR = 2.30, 95% CI 1.26–4.18, p = .01). Cockroach allergies were associated with 2.2 times as many nights in the hospital (95% CI 1.053–3.398, p = 0.036) and 2.2 times as many specialist visits (95% CI 1.489–3.110, p < 0.001), and mouse allergy was associated with 1.6 times as many ED visits (95% CI 1.092–2.257, p = 0.015) compared to those without pest allergies.

Conclusions

Concomitant occurrence of allergies is ubiquitous among urban adolescents with asthma. Only pest allergies, of those examined, appear to have implications for poorly controlled asthma, exacerbation and acute healthcare utilization. To reduce asthma burden in urban adolescents, identification and management of high-risk adolescents with pest allergen sensitization and exposure are warranted.
Literature
2.
go back to reference Milligan KL, Matsui E, Sharma H. Asthma in Urban children: epidemiology, environmental risk factors, and the public health domain. Curr Allergy Asthma Rep. 2016;16(4):33.CrossRefPubMed Milligan KL, Matsui E, Sharma H. Asthma in Urban children: epidemiology, environmental risk factors, and the public health domain. Curr Allergy Asthma Rep. 2016;16(4):33.CrossRefPubMed
3.
go back to reference Akinbami LJ, Moorman JE, Liu X. Asthma prevalence, health care use, and mortality: United States, 2005–2009. Natl Health Stat Rep. 2011;32:1–16. Akinbami LJ, Moorman JE, Liu X. Asthma prevalence, health care use, and mortality: United States, 2005–2009. Natl Health Stat Rep. 2011;32:1–16.
4.
go back to reference Akinbami LJ, Moorman JE, Garbe PL, Sondik EJ. Status of childhood asthma in the United States, 1980–2007. Pediatrics. 2009;123(Supplement 3):S131–45.CrossRefPubMed Akinbami LJ, Moorman JE, Garbe PL, Sondik EJ. Status of childhood asthma in the United States, 1980–2007. Pediatrics. 2009;123(Supplement 3):S131–45.CrossRefPubMed
6.
go back to reference Busse WW, Mitchell H. Addressing issues of asthma in inner-city children. J Allergy Clin Immunol. 2007;119(1):43–9.CrossRefPubMed Busse WW, Mitchell H. Addressing issues of asthma in inner-city children. J Allergy Clin Immunol. 2007;119(1):43–9.CrossRefPubMed
7.
go back to reference Etzel RA. How environmental exposures influence the development and exacerbation of asthma. Pediatrics. 2003;112(1):S233. Etzel RA. How environmental exposures influence the development and exacerbation of asthma. Pediatrics. 2003;112(1):S233.
10.
go back to reference Friedlander JL, Sheehan WJ, Baxi SN, et al. Food allergy and increased asthma morbidity in a School-based inner-city asthma study. J Allergy Clin Immunol Pract. 2013;1(5):479–84.CrossRefPubMedPubMedCentral Friedlander JL, Sheehan WJ, Baxi SN, et al. Food allergy and increased asthma morbidity in a School-based inner-city asthma study. J Allergy Clin Immunol Pract. 2013;1(5):479–84.CrossRefPubMedPubMedCentral
11.
go back to reference Liu AH, Jaramillo R, Sicherer SH, et al. National prevalence and risk factors for food allergy and relationship to asthma: results from the National Health and Nutrition Examination Survey 2005–2006. J Allergy Clin Immunol. 2010;126(4):798–806.CrossRefPubMedPubMedCentral Liu AH, Jaramillo R, Sicherer SH, et al. National prevalence and risk factors for food allergy and relationship to asthma: results from the National Health and Nutrition Examination Survey 2005–2006. J Allergy Clin Immunol. 2010;126(4):798–806.CrossRefPubMedPubMedCentral
12.
go back to reference National Heart, Lung, and Blood Institute. Expert panel report 3: Guidelines for the diagnosis and management of asthma. 2007. National Heart, Lung, and Blood Institute. Expert panel report 3: Guidelines for the diagnosis and management of asthma. 2007.
13.
go back to reference Camacho-Rivera M, Kawachi I, Bennett GG, Subramanian SV. Associations of neighborhood concentrated poverty, neighborhood racial/ethnic composition, and indoor allergen exposures: a cross-sectional analysis of los angeles households, 2006-2008. J Urban Health. 2014;91(4):661–76.CrossRefPubMedPubMedCentral Camacho-Rivera M, Kawachi I, Bennett GG, Subramanian SV. Associations of neighborhood concentrated poverty, neighborhood racial/ethnic composition, and indoor allergen exposures: a cross-sectional analysis of los angeles households, 2006-2008. J Urban Health. 2014;91(4):661–76.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Wilson J, Dixon SL, Breysse P, et al. Housing and allergens: a pooled analysis of nine US studies. Environ Res. 2010;110(2):189–98.CrossRefPubMed Wilson J, Dixon SL, Breysse P, et al. Housing and allergens: a pooled analysis of nine US studies. Environ Res. 2010;110(2):189–98.CrossRefPubMed
16.
go back to reference Stevenson LA, Gergen PJ, Hoover DR, Rosenstreich D, Mannino DM, Matte TD. Sociodemographic correlates of indoor allergen sensitivity among United States children. J Allergy Clin Immunol. 2001;108(5):747–52.CrossRefPubMed Stevenson LA, Gergen PJ, Hoover DR, Rosenstreich D, Mannino DM, Matte TD. Sociodemographic correlates of indoor allergen sensitivity among United States children. J Allergy Clin Immunol. 2001;108(5):747–52.CrossRefPubMed
17.
go back to reference Marchetti P, Pesce G, Villani S, et al. Pollen concentrations and prevalence of asthma and allergic rhinitis in Italy: evidence from the GEIRD study. Sci Total Environ. 2017;584:1093–9.CrossRefPubMed Marchetti P, Pesce G, Villani S, et al. Pollen concentrations and prevalence of asthma and allergic rhinitis in Italy: evidence from the GEIRD study. Sci Total Environ. 2017;584:1093–9.CrossRefPubMed
18.
go back to reference Palao-Ocharan P, Dominguez-Ortega J, Barranco P, Diaz-Almiron M, Quirce S. Does the profile of sensitization to grass pollen allergens have clinical relevance? J Investig Allergol Clin Immunol. 2016;26(3):188–9.CrossRefPubMed Palao-Ocharan P, Dominguez-Ortega J, Barranco P, Diaz-Almiron M, Quirce S. Does the profile of sensitization to grass pollen allergens have clinical relevance? J Investig Allergol Clin Immunol. 2016;26(3):188–9.CrossRefPubMed
19.
go back to reference Gent JF, Belanger K, Triche EW, Bracken MB, Beckett WS, Leaderer BP. Association of pediatric asthma severity with exposure to common household dust allergens. Environ Res. 2009;109(6):768–74.CrossRefPubMedPubMedCentral Gent JF, Belanger K, Triche EW, Bracken MB, Beckett WS, Leaderer BP. Association of pediatric asthma severity with exposure to common household dust allergens. Environ Res. 2009;109(6):768–74.CrossRefPubMedPubMedCentral
21.
go back to reference Morgan WJ, Crain EF, Gruchalla RS, et al. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med. 2004;351(11):1068–80.CrossRefPubMed Morgan WJ, Crain EF, Gruchalla RS, et al. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med. 2004;351(11):1068–80.CrossRefPubMed
22.
go back to reference Gergen PJ, Mortimer KM, Eggleston PA, et al. Results of the national cooperative inner-city asthma study (NCICAS) environmental intervention to reduce cockroach allergen exposure in inner-city homes. J Allergy Clin Immunol. 1999;103:501–6.CrossRefPubMed Gergen PJ, Mortimer KM, Eggleston PA, et al. Results of the national cooperative inner-city asthma study (NCICAS) environmental intervention to reduce cockroach allergen exposure in inner-city homes. J Allergy Clin Immunol. 1999;103:501–6.CrossRefPubMed
Metadata
Title
Common allergies in urban adolescents and their relationships with asthma control and healthcare utilization
Authors
Hyekyun Rhee
Tanzy Love
Donald Harrington
Annette Grape
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Allergy, Asthma & Clinical Immunology / Issue 1/2018
Electronic ISSN: 1710-1492
DOI
https://doi.org/10.1186/s13223-018-0260-y

Other articles of this Issue 1/2018

Allergy, Asthma & Clinical Immunology 1/2018 Go to the issue