Skip to main content
Top
Published in: Allergy, Asthma & Clinical Immunology 1/2018

Open Access 01-12-2018 | Case report

Heat-induced necrosis after bronchial thermoplasty: a new concern?

Authors: Francesco Menzella, Mirco Lusuardi, Carla Galeone, Gloria Montanari, Alberto Cavazza, Nicola Facciolongo

Published in: Allergy, Asthma & Clinical Immunology | Issue 1/2018

Login to get access

Abstract

Background

Bronchial thermoplasty (BT) is an endoscopic procedure for the treatment of severe refractory asthma, based on the local airways delivery of radio-frequency at 65 °C. Several controlled clinical studies demonstrated the effectiveness of BT on clinical outcomes, particularly the reduction of asthma exacerbations. During procedure or shortly after, significant but transient respiratory adverse events have been reported.

Case report

We describe the case of a male, caucasian, 56-year-old, non-smoker patient with non-allergic severe asthma. A few days after the second BT session performed in the left lower lobe, persistent haemoptysis appeared requiring patient hospitalization. A chest CT scan showed mild varicoid bronchiectasis and distal parenchymal infiltrate in the basal anterior segment of the left lower lobe. At fibreoptic bronchoscopy two small nodular neoformations were observed in sub-segmental areas of the same lobe. Histological examination showed mild non-specific inflammation of bronchial mucosa, and some large fragments of peribronchial pulmonary parenchyma with an area of haemorrhagic necrosis. The patient was treated empirically with co-amoxiclav, azithromycin and prednisone. A new chest CT showed a complete resolution of the parenchymal opacity. Finally, the patient underwent the third session of BT, without recurrence of haemoptysis or radiological changes.

Discussion

Bronchial thermoplasty is a generally safe procedure. To our knowledge this is the first report of necrosis of the treated bronchus and haemoptysis complicating BT after the second session. The pulmonary damage was most likely determined by a thermal shock induced by BT. One hypothesis could be a structural fragility of the treated bronchus, possibly related to bronchiectasis. A technical malfunction of the BT controller or the catheter, causing an excessive energy delivery could not be excluded. Adverse events following BT deserve particular attention but should not discourage clinicians from the application of this promising procedure.
Literature
1.
go back to reference Menzella F, Lusuardi M, Galeone C, Facciolongo N. Bronchial thermoplasty and the role of airway smooth muscle: are we on the right direction? Ther Clin Risk Manag. 2017;13:1213–21.CrossRefPubMedPubMedCentral Menzella F, Lusuardi M, Galeone C, Facciolongo N. Bronchial thermoplasty and the role of airway smooth muscle: are we on the right direction? Ther Clin Risk Manag. 2017;13:1213–21.CrossRefPubMedPubMedCentral
3.
go back to reference Laxmanan B, Egressy K, Murgu SD, White SR, Hogarth DK. Advances in bronchial thermoplasty. Chest. 2016;150(3):694–704.CrossRefPubMed Laxmanan B, Egressy K, Murgu SD, White SR, Hogarth DK. Advances in bronchial thermoplasty. Chest. 2016;150(3):694–704.CrossRefPubMed
4.
go back to reference Facciolongo N, Menzella F, Lusuardi M, Piro R, Galeone C, Castagnetti C, et al. Recurrent lung atelectasis from fibrin plugs as a very early complication of bronchial thermoplasty: a case report. Multidiscip Respir Med. 2015;10(1):9.CrossRefPubMedPubMedCentral Facciolongo N, Menzella F, Lusuardi M, Piro R, Galeone C, Castagnetti C, et al. Recurrent lung atelectasis from fibrin plugs as a very early complication of bronchial thermoplasty: a case report. Multidiscip Respir Med. 2015;10(1):9.CrossRefPubMedPubMedCentral
5.
go back to reference Pretolani M, Bergqvist A, Thabut G, et al. Effectiveness of bronchial thermoplasty in patients with severe refractory asthma: clinical and histopathologic correlations. J Allergy Clin Immunol. 2017;139(4):1176–85.CrossRefPubMed Pretolani M, Bergqvist A, Thabut G, et al. Effectiveness of bronchial thermoplasty in patients with severe refractory asthma: clinical and histopathologic correlations. J Allergy Clin Immunol. 2017;139(4):1176–85.CrossRefPubMed
6.
go back to reference Debray MP, Dombret MC, Pretolani M, et al. Early computed tomography modifications following bronchial thermoplasty in patients with severe asthma. Eur Respir J. 2017;49(3):1601565.CrossRefPubMed Debray MP, Dombret MC, Pretolani M, et al. Early computed tomography modifications following bronchial thermoplasty in patients with severe asthma. Eur Respir J. 2017;49(3):1601565.CrossRefPubMed
7.
go back to reference Dyrda P, Tazzeo T, DoHarris L, Nilius B, Roman HN, Lauzon AM, et al. Acute response of airway muscle to extreme temperature includes disruption of actin-myosin interaction. Am J Respir Cell Mol Biol. 2011;44(2):213–21.CrossRefPubMed Dyrda P, Tazzeo T, DoHarris L, Nilius B, Roman HN, Lauzon AM, et al. Acute response of airway muscle to extreme temperature includes disruption of actin-myosin interaction. Am J Respir Cell Mol Biol. 2011;44(2):213–21.CrossRefPubMed
8.
go back to reference Miller JD, Cox G, Vincic L, Lombard CM, Loomas BE, Danek CJ. A prospective feasibility study of bronchial thermoplasty in the human airway. Chest. 2005;127(6):1999–2006.CrossRefPubMed Miller JD, Cox G, Vincic L, Lombard CM, Loomas BE, Danek CJ. A prospective feasibility study of bronchial thermoplasty in the human airway. Chest. 2005;127(6):1999–2006.CrossRefPubMed
9.
go back to reference Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, et al. Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs. J Appl Physiol (1985). 2004;97(5):1946–53.CrossRef Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, et al. Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs. J Appl Physiol (1985). 2004;97(5):1946–53.CrossRef
10.
go back to reference d’Hooghe JNS, van den Berk IAH, Annema JT, Bonta PI. Acute radiological abnormalities after bronchial thermoplasty: a prospective cohort trial. Respiration. 2017;94(3):258–62.CrossRefPubMedPubMedCentral d’Hooghe JNS, van den Berk IAH, Annema JT, Bonta PI. Acute radiological abnormalities after bronchial thermoplasty: a prospective cohort trial. Respiration. 2017;94(3):258–62.CrossRefPubMedPubMedCentral
11.
go back to reference Vogl TJ, Nour-Eldin NA, Albrecht MH, Kaltenbach B, Hohenforst-Schmidt W, Lin H, et al. Thermal ablation of lung tumors: focus on microwave ablation. Rofo. 2017;189(9):828–43.CrossRefPubMed Vogl TJ, Nour-Eldin NA, Albrecht MH, Kaltenbach B, Hohenforst-Schmidt W, Lin H, et al. Thermal ablation of lung tumors: focus on microwave ablation. Rofo. 2017;189(9):828–43.CrossRefPubMed
12.
go back to reference Chatha N, Fortin D, Bosma KJ. Management of necrotizing pneumonia and pulmonary gangrene: a case series and review of the literature. Can Respir J. 2014;21(4):239–45.CrossRefPubMedPubMedCentral Chatha N, Fortin D, Bosma KJ. Management of necrotizing pneumonia and pulmonary gangrene: a case series and review of the literature. Can Respir J. 2014;21(4):239–45.CrossRefPubMedPubMedCentral
Metadata
Title
Heat-induced necrosis after bronchial thermoplasty: a new concern?
Authors
Francesco Menzella
Mirco Lusuardi
Carla Galeone
Gloria Montanari
Alberto Cavazza
Nicola Facciolongo
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Allergy, Asthma & Clinical Immunology / Issue 1/2018
Electronic ISSN: 1710-1492
DOI
https://doi.org/10.1186/s13223-018-0252-y

Other articles of this Issue 1/2018

Allergy, Asthma & Clinical Immunology 1/2018 Go to the issue