Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2018

Open Access 01-12-2018 | Research

Neurophysiological signals as predictive translational biomarkers for Alzheimer’s disease treatment: effects of donepezil on neuronal network oscillations in TgF344-AD rats

Authors: Milan Stoiljkovic, Craig Kelley, Tamas L. Horvath, Mihály Hajós

Published in: Alzheimer's Research & Therapy | Issue 1/2018

Login to get access

Abstract

Background

Translational research in Alzheimer’s disease (AD) pathology provides evidence that accumulation of amyloid-β and hyperphosphorylated tau, neuropathological hallmarks of AD, is associated with complex disturbances in synaptic and neuronal function leading to oscillatory abnormalities in the neuronal networks that support memory and cognition. Accordingly, our recent study on transgenic TgF344-AD rats modeling AD showed an age-dependent reduction of stimulation-induced oscillations in the hippocampus, and disrupted long-range connectivity together with enhanced neuronal excitability in the cortex, reflected in greatly increased expression of high-voltage spindles, an epileptic absence seizure-like activity. To better understand the translational value of observed oscillatory abnormalities in these rats, we examine here the effects of donepezil, an acetylcholine esterase inhibitor clinically approved for AD treatment.

Methods

Brainstem nucleus pontis oralis stimulation-induced hippocampal oscillations were recorded under urethane anesthesia in adult (6-month-old) and aged (12-month-old) TgF344-AD and wild-type rats. Spontaneous cortical activity was monitored in a cohort of freely behaving aged rats implanted with frontal and occipital cortical electroencephalography (EEG) electrodes.

Results

Subcutaneous administration of donepezil significantly augmented stimulation-induced hippocampal theta oscillation in aged wild-type rats and both adult and aged TgF344-AD rats, which have been previously shown to have diminished response to nucleus pontis oralis stimulation. Moreover, in adult TgF344-AD rats, donepezil also significantly increased theta phase-gamma amplitude coupling in the hippocampus during stimulation. However, neither of these effects were significantly changed in adult wild-type rats. Under freely behaving conditions, donepezil treatment had the opposite effect on cortical oscillatory connectivity in TgF344-AD and wild-type rats, and it reduced the occurrence of high-voltage spindle activity in TgF344-AD rats.

Conclusions

Together, these results imply that pharmacologically enhancing cholinergic tone with donepezil could partially reverse oscillatory abnormalities in TgF344-AD rats, which is in line with its clinical effectiveness in AD patients. Therefore, our study suggests good translational opportunities for these neurophysiological signals recorded in TgF344-AD rats, and their application could be considered in drug discovery efforts for developing therapies with disease-modifying potential.
Literature
1.
go back to reference Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement (N Y). 2017;3:367–84. Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement (N Y). 2017;3:367–84.
2.
go back to reference Drummond E, Wisniewski T. Alzheimer's disease: experimental models and reality. Acta Neuropathol. 2017;133:155–75.CrossRefPubMed Drummond E, Wisniewski T. Alzheimer's disease: experimental models and reality. Acta Neuropathol. 2017;133:155–75.CrossRefPubMed
3.
go back to reference Pankevich DE, Wizemann TM, Altevogt BM. Improving the utility and translation of animal models for nervous system disorders: workshop summary. Washington (DC): The National Academies Press; 2013. Pankevich DE, Wizemann TM, Altevogt BM. Improving the utility and translation of animal models for nervous system disorders: workshop summary. Washington (DC): The National Academies Press; 2013.
4.
go back to reference Drinkenburg WH, Ruigt GS, Ahnaou A. Pharmaco-EEG studies in animals: an overview of contemporary translational applications. Neuropsychobiology. 2015;72:151–64.CrossRefPubMed Drinkenburg WH, Ruigt GS, Ahnaou A. Pharmaco-EEG studies in animals: an overview of contemporary translational applications. Neuropsychobiology. 2015;72:151–64.CrossRefPubMed
5.
go back to reference Leiser SC, Dunlop J, Bowlby MR, Devilbiss DM. Aligning strategies for using EEG as a surrogate biomarker: a review of preclinical and clinical research. Biochem Pharmacol. 2011;81:1408–21.CrossRefPubMed Leiser SC, Dunlop J, Bowlby MR, Devilbiss DM. Aligning strategies for using EEG as a surrogate biomarker: a review of preclinical and clinical research. Biochem Pharmacol. 2011;81:1408–21.CrossRefPubMed
6.
go back to reference Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002;33:325–40.CrossRef Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002;33:325–40.CrossRef
7.
go back to reference Cornwell BR, Arkin N, Overstreet C, Carver FW, Grillon C. Distinct contributions of human hippocampal theta to spatial cognition and anxiety. Hippocampus. 2012;22:1848–59.CrossRefPubMedPubMedCentral Cornwell BR, Arkin N, Overstreet C, Carver FW, Grillon C. Distinct contributions of human hippocampal theta to spatial cognition and anxiety. Hippocampus. 2012;22:1848–59.CrossRefPubMedPubMedCentral
8.
go back to reference Lega BC, Jacobs J, Kahana M. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus. 2012;22:748–61.CrossRefPubMed Lega BC, Jacobs J, Kahana M. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus. 2012;22:748–61.CrossRefPubMed
9.
10.
go back to reference Babiloni C, Del Percio C, Lizio R, Noce G, Cordone S, Lopez S, et al. Abnormalities of cortical neural synchronization mechanisms in patients with dementia due to Alzheimer's and Lewy body diseases: an EEG study. Neurobiol Aging. 2017;55:143–58.CrossRefPubMed Babiloni C, Del Percio C, Lizio R, Noce G, Cordone S, Lopez S, et al. Abnormalities of cortical neural synchronization mechanisms in patients with dementia due to Alzheimer's and Lewy body diseases: an EEG study. Neurobiol Aging. 2017;55:143–58.CrossRefPubMed
11.
go back to reference Rodriguez G, Copello F, Vitali P, Perego G, Nobili F. EEG spectral profile to stage Alzheimer's disease. Clin Neurophysiol. 1999;110:1831–7.CrossRefPubMed Rodriguez G, Copello F, Vitali P, Perego G, Nobili F. EEG spectral profile to stage Alzheimer's disease. Clin Neurophysiol. 1999;110:1831–7.CrossRefPubMed
12.
go back to reference Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 2012;149:708–21.CrossRefPubMedPubMedCentral Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 2012;149:708–21.CrossRefPubMedPubMedCentral
14.
go back to reference Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D, Spivak I, et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric abeta, and frank neuronal loss. J Neurosci. 2013;33:6245–56.CrossRefPubMedPubMedCentral Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D, Spivak I, et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric abeta, and frank neuronal loss. J Neurosci. 2013;33:6245–56.CrossRefPubMedPubMedCentral
15.
go back to reference Munoz-Moreno E, Tudela R, Lopez-Gil X, Soria G. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease. Alzheimers Res Ther. 2018;10:16.CrossRefPubMedPubMedCentral Munoz-Moreno E, Tudela R, Lopez-Gil X, Soria G. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease. Alzheimers Res Ther. 2018;10:16.CrossRefPubMedPubMedCentral
16.
go back to reference Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52:155–68.CrossRefPubMed Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52:155–68.CrossRefPubMed
17.
go back to reference Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF, et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann Neurol. 2016;80:858–70.CrossRefPubMedPubMedCentral Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF, et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann Neurol. 2016;80:858–70.CrossRefPubMedPubMedCentral
18.
go back to reference Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Fourth edition. San Diego: Academic Press; 1998. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Fourth edition. San Diego: Academic Press; 1998.
20.
go back to reference Stoiljkovic M, Kelley C, Hajós GP, Nagy D, Koenig G, Leventhal L, et al. Hippocampal network dynamics in response to α7 nACh receptors activation in amyloid-β overproducing transgenic mice. Neurobiol Aging. 2016;45:161–8.CrossRefPubMed Stoiljkovic M, Kelley C, Hajós GP, Nagy D, Koenig G, Leventhal L, et al. Hippocampal network dynamics in response to α7 nACh receptors activation in amyloid-β overproducing transgenic mice. Neurobiol Aging. 2016;45:161–8.CrossRefPubMed
21.
go back to reference Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H. Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci U S A. 2009;106:20942–7.CrossRefPubMedPubMedCentral Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H. Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci U S A. 2009;106:20942–7.CrossRefPubMedPubMedCentral
22.
go back to reference Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8:194–208.CrossRefPubMed Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8:194–208.CrossRefPubMed
23.
go back to reference Mormann F, Lehnertz K, David P, Christian E, Elger CE. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D. 2000;144:358–69.CrossRef Mormann F, Lehnertz K, David P, Christian E, Elger CE. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D. 2000;144:358–69.CrossRef
24.
go back to reference Scott L, Feng J, Kiss T, Needle E, Atchison K, Kawabe TT, et al. Age-dependent disruption in hippocampal theta oscillation in amyloid-β overproducing transgenic mice. Neurobiol Aging. 2012;33:1481 e13–23.CrossRef Scott L, Feng J, Kiss T, Needle E, Atchison K, Kawabe TT, et al. Age-dependent disruption in hippocampal theta oscillation in amyloid-β overproducing transgenic mice. Neurobiol Aging. 2012;33:1481 e13–23.CrossRef
25.
go back to reference Scott L, Kiss T, Kawabe TT, Hajós M. Neuronal network activity in the hippocampus of tau transgenic (Tg4510) mice. Neurobiol Aging. 2016;37:66–73.CrossRefPubMed Scott L, Kiss T, Kawabe TT, Hajós M. Neuronal network activity in the hippocampus of tau transgenic (Tg4510) mice. Neurobiol Aging. 2016;37:66–73.CrossRefPubMed
26.
go back to reference Stoiljkovic M, Leventhal L, Chen A, Chen T, Driscoll R, Flood D, et al. Concentration-response relationship of the alpha7 nicotinic acetylcholine receptor agonist FRM-17874 across multiple in vitro and in vivo assays. Biochem Pharmacol. 2015;97:576–89.CrossRefPubMed Stoiljkovic M, Leventhal L, Chen A, Chen T, Driscoll R, Flood D, et al. Concentration-response relationship of the alpha7 nicotinic acetylcholine receptor agonist FRM-17874 across multiple in vitro and in vivo assays. Biochem Pharmacol. 2015;97:576–89.CrossRefPubMed
27.
go back to reference Neligan A, Walker MC. Initial treatment of nonconvulsive status epilepticus. In: Drislane F, Kaplan MP, editors. Status epilepticus current clinical neurology. Cham: Springer; 2018. p. 275–82.CrossRef Neligan A, Walker MC. Initial treatment of nonconvulsive status epilepticus. In: Drislane F, Kaplan MP, editors. Status epilepticus current clinical neurology. Cham: Springer; 2018. p. 275–82.CrossRef
28.
go back to reference Nimmrich V, Draguhn A, Axmacher N. Neuronal network oscillations in neurodegenerative diseases. NeuroMolecular Med. 2015;17:270–84.CrossRefPubMed Nimmrich V, Draguhn A, Axmacher N. Neuronal network oscillations in neurodegenerative diseases. NeuroMolecular Med. 2015;17:270–84.CrossRefPubMed
29.
go back to reference Dauwels J, Vialatte F, Cichocki A. Diagnosis of Alzheimer's disease from EEG signals: where are we standing? Curr Alzheimer Res. 2010;7:487–505.CrossRefPubMed Dauwels J, Vialatte F, Cichocki A. Diagnosis of Alzheimer's disease from EEG signals: where are we standing? Curr Alzheimer Res. 2010;7:487–505.CrossRefPubMed
30.
go back to reference Gurevicius K, Lipponen A, Tanila H. Increased cortical and thalamic excitability in freely moving APPswe/PS1dE9 mice modeling epileptic activity associated with Alzheimer's disease. Cereb Cortex. 2013;23:1148–58.CrossRefPubMed Gurevicius K, Lipponen A, Tanila H. Increased cortical and thalamic excitability in freely moving APPswe/PS1dE9 mice modeling epileptic activity associated with Alzheimer's disease. Cereb Cortex. 2013;23:1148–58.CrossRefPubMed
31.
go back to reference Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci. 2016;17:777–92.CrossRefPubMed Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci. 2016;17:777–92.CrossRefPubMed
32.
go back to reference Goutagny R, Gu N, Cavanagh C, Jackson J, Chabot JG, Quirion R, et al. Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer's disease. Eur J Neurosci. 2013;37:1896–902.CrossRefPubMed Goutagny R, Gu N, Cavanagh C, Jackson J, Chabot JG, Quirion R, et al. Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer's disease. Eur J Neurosci. 2013;37:1896–902.CrossRefPubMed
33.
go back to reference Sammer G, Blecker C, Gebhardt H, Bischoff M, Stark R, Morgen K, et al. Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload. Hum Brain Mapp. 2007;28:793–803.CrossRefPubMed Sammer G, Blecker C, Gebhardt H, Bischoff M, Stark R, Morgen K, et al. Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload. Hum Brain Mapp. 2007;28:793–803.CrossRefPubMed
34.
go back to reference Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci U S A. 2010;107:3228–33.CrossRefPubMedPubMedCentral Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci U S A. 2010;107:3228–33.CrossRefPubMedPubMedCentral
35.
go back to reference McNaughton N, Kocsis B, Hajós M. Elicited hippocampal theta rhythm: a screen for anxiolytic and procognitive drugs through changes in hippocampal function? Behav Pharmacol. 2007;18:329–46.CrossRefPubMed McNaughton N, Kocsis B, Hajós M. Elicited hippocampal theta rhythm: a screen for anxiolytic and procognitive drugs through changes in hippocampal function? Behav Pharmacol. 2007;18:329–46.CrossRefPubMed
36.
go back to reference Stoiljkovic M, Kelley C, Nagy D, Hajós M. Modulation of hippocampal neuronal network oscillations by α7 nACh receptors. Biochem Pharmacol. 2015;97:445–53.CrossRefPubMed Stoiljkovic M, Kelley C, Nagy D, Hajós M. Modulation of hippocampal neuronal network oscillations by α7 nACh receptors. Biochem Pharmacol. 2015;97:445–53.CrossRefPubMed
37.
go back to reference Vandecasteele M, Varga V, Berenyi A, Papp E, Bartho P, Venance L, et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc Natl Acad Sci U S A. 2014;111:13535–40.CrossRefPubMedPubMedCentral Vandecasteele M, Varga V, Berenyi A, Papp E, Bartho P, Venance L, et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc Natl Acad Sci U S A. 2014;111:13535–40.CrossRefPubMedPubMedCentral
38.
go back to reference Kosasa T, Kuriya Y, Matsui K, Yamanishi Y. Effect of donepezil hydrochloride (E2020) on basal concentration of extracellular acetylcholine in the hippocampus of rats. Eur J Pharmacol. 1999;380:101–7.CrossRefPubMed Kosasa T, Kuriya Y, Matsui K, Yamanishi Y. Effect of donepezil hydrochloride (E2020) on basal concentration of extracellular acetylcholine in the hippocampus of rats. Eur J Pharmacol. 1999;380:101–7.CrossRefPubMed
39.
go back to reference Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron. 2016;91:1199–218.CrossRefPubMedPubMedCentral Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron. 2016;91:1199–218.CrossRefPubMedPubMedCentral
41.
go back to reference Nathan PJ, Baker A, Carr E, Earle J, Jones M, Nieciecki M, et al. Cholinergic modulation of cognitive function in healthy subjects: acute effects of donepezil, a cholinesterase inhibitor. Hum Psychopharmacol. 2001;16:481–3.CrossRefPubMed Nathan PJ, Baker A, Carr E, Earle J, Jones M, Nieciecki M, et al. Cholinergic modulation of cognitive function in healthy subjects: acute effects of donepezil, a cholinesterase inhibitor. Hum Psychopharmacol. 2001;16:481–3.CrossRefPubMed
42.
go back to reference Repantis D, Laisney O, Heuser I. Acetylcholinesterase inhibitors and memantine for neuroenhancement in healthy individuals: a systematic review. Pharmacol Res. 2010;61:473–81.CrossRefPubMed Repantis D, Laisney O, Heuser I. Acetylcholinesterase inhibitors and memantine for neuroenhancement in healthy individuals: a systematic review. Pharmacol Res. 2010;61:473–81.CrossRefPubMed
43.
go back to reference Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL. Epileptic activity in Alzheimer's disease: causes and clinical relevance. Lancet Neurol. 2017;16:311–22.CrossRefPubMedPubMedCentral Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL. Epileptic activity in Alzheimer's disease: causes and clinical relevance. Lancet Neurol. 2017;16:311–22.CrossRefPubMedPubMedCentral
44.
go back to reference Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fulop L, et al. Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci. 2009;29:3453–62.CrossRefPubMed Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fulop L, et al. Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci. 2009;29:3453–62.CrossRefPubMed
45.
go back to reference Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron. 2007;55:697–711.CrossRefPubMed Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron. 2007;55:697–711.CrossRefPubMed
46.
go back to reference Buzsáki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci. 1988;8:4007–26.CrossRefPubMed Buzsáki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci. 1988;8:4007–26.CrossRefPubMed
47.
go back to reference Radek RJ, Curzon P, Decker MW. Characterization of high voltage spindles and spatial memory in young, mature and aged rats. Brain Res Bull. 1994;33:183–8.CrossRefPubMed Radek RJ, Curzon P, Decker MW. Characterization of high voltage spindles and spatial memory in young, mature and aged rats. Brain Res Bull. 1994;33:183–8.CrossRefPubMed
48.
go back to reference Shaw FZ. 7-12 Hz high-voltage rhythmic spike discharges in rats evaluated by antiepileptic drugs and flicker stimulation. J Neurophysiol. 2007;97:238–47.CrossRefPubMed Shaw FZ. 7-12 Hz high-voltage rhythmic spike discharges in rats evaluated by antiepileptic drugs and flicker stimulation. J Neurophysiol. 2007;97:238–47.CrossRefPubMed
49.
go back to reference Riekkinen P Jr, Riekkinen M, Sirvio J, Miettinen R, Riekkinen P. Loss of cholinergic neurons in the nucleus basalis induces neocortical electroencephalographic and passive avoidance deficits. Neuroscience. 1992;47:823–31.CrossRefPubMed Riekkinen P Jr, Riekkinen M, Sirvio J, Miettinen R, Riekkinen P. Loss of cholinergic neurons in the nucleus basalis induces neocortical electroencephalographic and passive avoidance deficits. Neuroscience. 1992;47:823–31.CrossRefPubMed
50.
go back to reference Killory BD, Bai X, Negishi M, Vega C, Spann MN, Vestal M, et al. Impaired attention and network connectivity in childhood absence epilepsy. NeuroImage. 2011;56:2209–17.CrossRefPubMedPubMedCentral Killory BD, Bai X, Negishi M, Vega C, Spann MN, Vestal M, et al. Impaired attention and network connectivity in childhood absence epilepsy. NeuroImage. 2011;56:2209–17.CrossRefPubMedPubMedCentral
51.
go back to reference Bentley P, Driver J, Dolan RJ. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health. Brain. 2008;131:409–24.CrossRefPubMed Bentley P, Driver J, Dolan RJ. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health. Brain. 2008;131:409–24.CrossRefPubMed
52.
go back to reference Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Koeppe RA, et al. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2005;76:315–9.CrossRefPubMedPubMedCentral Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Koeppe RA, et al. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2005;76:315–9.CrossRefPubMedPubMedCentral
53.
go back to reference Brassen S, Adler G. Short-term effects of acetylcholinesterase inhibitor treatment on EEG and memory performance in Alzheimer patients: an open, controlled trial. Pharmacopsychiatry. 2003;36:304–8.CrossRefPubMed Brassen S, Adler G. Short-term effects of acetylcholinesterase inhibitor treatment on EEG and memory performance in Alzheimer patients: an open, controlled trial. Pharmacopsychiatry. 2003;36:304–8.CrossRefPubMed
54.
go back to reference Reeves RR, Struve FA, Patrick G. The effects of donepezil on quantitative EEG in patients with Alzheimer's disease. Clin Electroencephalogr. 2002;33:93–6.CrossRefPubMed Reeves RR, Struve FA, Patrick G. The effects of donepezil on quantitative EEG in patients with Alzheimer's disease. Clin Electroencephalogr. 2002;33:93–6.CrossRefPubMed
55.
go back to reference Jones RW. Have cholinergic therapies reached their clinical boundary in Alzheimer's disease? Int J Geriatr Psychiatry. 2003;18:S7–S13.CrossRefPubMed Jones RW. Have cholinergic therapies reached their clinical boundary in Alzheimer's disease? Int J Geriatr Psychiatry. 2003;18:S7–S13.CrossRefPubMed
56.
go back to reference Babiloni C, Cassetta E, Dal Forno G, Del Percio C, Ferreri F, Ferri R, et al. Donepezil effects on sources of cortical rhythms in mild Alzheimer's disease: responders vs. non-responders. NeuroImage. 2006;31:1650–65.CrossRefPubMed Babiloni C, Cassetta E, Dal Forno G, Del Percio C, Ferreri F, Ferri R, et al. Donepezil effects on sources of cortical rhythms in mild Alzheimer's disease: responders vs. non-responders. NeuroImage. 2006;31:1650–65.CrossRefPubMed
57.
go back to reference Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.CrossRef Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.CrossRef
58.
go back to reference Wirsich J, Rey M, Guye M, Benar C, Lanteaume L, Ridley B, et al. Brain networks are independently modulated by donepezil, sleep, and sleep deprivation. Brain Topogr. 2018;31:380–91.CrossRefPubMed Wirsich J, Rey M, Guye M, Benar C, Lanteaume L, Ridley B, et al. Brain networks are independently modulated by donepezil, sleep, and sleep deprivation. Brain Topogr. 2018;31:380–91.CrossRefPubMed
60.
go back to reference Knight R, Khondoker M, Magill N, Stewart R, Landau S. A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia. Dement Geriatr Cogn Disord. 2018;45:131–51.CrossRefPubMed Knight R, Khondoker M, Magill N, Stewart R, Landau S. A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia. Dement Geriatr Cogn Disord. 2018;45:131–51.CrossRefPubMed
Metadata
Title
Neurophysiological signals as predictive translational biomarkers for Alzheimer’s disease treatment: effects of donepezil on neuronal network oscillations in TgF344-AD rats
Authors
Milan Stoiljkovic
Craig Kelley
Tamas L. Horvath
Mihály Hajós
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2018
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-018-0433-4

Other articles of this Issue 1/2018

Alzheimer's Research & Therapy 1/2018 Go to the issue