Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2018

Open Access 01-12-2018 | Research

Genome-wide association study for variants that modulate relationships between cerebrospinal fluid amyloid-beta 42, tau, and p-tau levels

Authors: Taylor J. Maxwell, Chris Corcoran, Jorge L. del-Aguila, John P. Budde, Yuetiva Deming, Carlos Cruchaga, Alison M. Goate, John S. K. Kauwe, Alzheimer’s Disease Neuroimaging Initiative

Published in: Alzheimer's Research & Therapy | Issue 1/2018

Login to get access

Abstract

Background

A relationship quantitative trait locus exists when the correlation between multiple traits varies by genotype for that locus. Relationship quantitative trait loci (rQTL) are often involved in gene-by-gene (G×G) interactions or gene-by-environmental interactions, making them a powerful tool for detecting G×G.

Methods

We performed genome-wide association studies to identify rQTL between tau and Aβ42 and ptau and Aβ42 with over 3000 individuals using age, gender, series, APOE ε2, APOE ε4, and two principal components for population structure as covariates. Each significant rQTL was separately screened for interactions with other loci for each trait in the rQTL model. Parametric bootstrapping was used to assess significance.

Results

We found four significant tau/Aβ42 rQTL from three unique locations and six ptau/Aβ42 rQTL from five unique locations. G×G screens with these rQTL produced four significant G×G interactions (one Aβ42, two ptau, and one tau) with four rQTL where each second locus was from a unique location. On follow-up, rs1036819 and rs74025622 were associated with Alzheimer’s disease (AD) case/control status; rs15205 and rs79099429 were associated with rate of decline.

Conclusions

The two most significant rQTL (rs8027714 and rs1036819) for ptau/Aβ42 are on different chromosomes and both are strong hits for pelvic organ prolapse. While diseases of the nervous system can cause pelvic organ prolapse, it is unlikely related to the ptau/Aβ42 relationship but may suggest that these two loci share a pathway. In addition to a ptau/Aβ42 rQTL and association with AD case/control status, rs1036819 is a strong rQTL for case/control status/Aβ42 and for tau/Aβ42. It resides in the ZFAT gene, which is related to autoimmune thyroid disease. For tau, rs9817620 interacts with the tau/Aβ42 rQTL rs74025622. It is in the CHL1 gene, which is a neural cell adhesion molecule and may be involved in signal transduction pathways. CHL1 is related to BACE1, which is a β-secretase enzyme that initiates production of the β-amyloid peptide involved in AD and is a primary drug target. Overall, there are numerous loci that affect the relationship between these important AD endophenotypes and some are due to interactions with other loci. Some affect the risk of AD and/or rate of progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.CrossRefPubMedPubMedCentral Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.CrossRefPubMedPubMedCentral
2.
go back to reference Hohman TJ, Koran MEI, Thornton-Wells TA, Alzheimer’s Disease Neuroimaging Initiative. Genetic modification of the relationship between phosphorylated tau and neurodegeneration. Alzheimers Dement. 2014;10:637–645.e1.CrossRefPubMedPubMedCentral Hohman TJ, Koran MEI, Thornton-Wells TA, Alzheimer’s Disease Neuroimaging Initiative. Genetic modification of the relationship between phosphorylated tau and neurodegeneration. Alzheimers Dement. 2014;10:637–645.e1.CrossRefPubMedPubMedCentral
3.
go back to reference Hohman TJ, Koran MEI, Thornton-Wells TA, Alzheimer’s Neuroimaging Initiative. Genetic variation modifies risk for neurodegeneration based on biomarker status. Front Aging Neurosci. 2014;6:183.CrossRefPubMedPubMedCentral Hohman TJ, Koran MEI, Thornton-Wells TA, Alzheimer’s Neuroimaging Initiative. Genetic variation modifies risk for neurodegeneration based on biomarker status. Front Aging Neurosci. 2014;6:183.CrossRefPubMedPubMedCentral
4.
go back to reference Hohman TJ, Chibnik L, Bush WS, Jefferson AL, De Jaeger PL, Thornton-Wells TA, et al. GSK3β interactions with amyloid genes: an autopsy verification and extension. Neurotox Res. 2015;28:232–8.CrossRefPubMedPubMedCentral Hohman TJ, Chibnik L, Bush WS, Jefferson AL, De Jaeger PL, Thornton-Wells TA, et al. GSK3β interactions with amyloid genes: an autopsy verification and extension. Neurotox Res. 2015;28:232–8.CrossRefPubMedPubMedCentral
5.
go back to reference Maxwell TJ, Ballantyne CM, Cheverud JM, Guild CS, Ndumele CE, Boerwinkle E. APOE modulates the correlation between triglycerides, cholesterol, and CHD through pleiotropy, and gene-by-gene interactions. Genetics. 2013;195:1397–405.CrossRefPubMedPubMedCentral Maxwell TJ, Ballantyne CM, Cheverud JM, Guild CS, Ndumele CE, Boerwinkle E. APOE modulates the correlation between triglycerides, cholesterol, and CHD through pleiotropy, and gene-by-gene interactions. Genetics. 2013;195:1397–405.CrossRefPubMedPubMedCentral
6.
go back to reference Pavlicev M, Kenney-Hunt JP, Norgard EA, Roseman CC, Wolf JB, Cheverud JM. Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution. 2008;62:199–213.PubMed Pavlicev M, Kenney-Hunt JP, Norgard EA, Roseman CC, Wolf JB, Cheverud JM. Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution. 2008;62:199–213.PubMed
7.
go back to reference Pavlicev M, Norgard EA, Fawcett GL, Cheverud JM. Evolution of pleiotropy: epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map. J Exp Zool B Mol Dev Evol. 2011;316:371–85.CrossRefPubMedPubMedCentral Pavlicev M, Norgard EA, Fawcett GL, Cheverud JM. Evolution of pleiotropy: epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map. J Exp Zool B Mol Dev Evol. 2011;316:371–85.CrossRefPubMedPubMedCentral
8.
go back to reference Pavlicev M, Cheverud JM, Wagner GP. Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc Biol Sci. 2011;278:1903–12.CrossRefPubMed Pavlicev M, Cheverud JM, Wagner GP. Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc Biol Sci. 2011;278:1903–12.CrossRefPubMed
9.
go back to reference Deming Y, Li Z, Kapoor M, Harari O, Del-Aguila JL, Black K, et al. Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol. 2017;133:839–56.CrossRefPubMedPubMedCentral Deming Y, Li Z, Kapoor M, Harari O, Del-Aguila JL, Black K, et al. Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol. 2017;133:839–56.CrossRefPubMedPubMedCentral
10.
go back to reference Cruchaga C, Kauwe JSK, Harari O, Jin SC, Cai Y, Karch CM, et al. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron. 2013;78:256–68.CrossRefPubMedPubMedCentral Cruchaga C, Kauwe JSK, Harari O, Jin SC, Cai Y, Karch CM, et al. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron. 2013;78:256–68.CrossRefPubMedPubMedCentral
11.
go back to reference Cruchaga C, Kauwe JSK, Nowotny P, Bales K, Pickering EH, Mayo K, et al. Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Hum Mol Genet. 2012;21:4558–71.CrossRefPubMedPubMedCentral Cruchaga C, Kauwe JSK, Nowotny P, Bales K, Pickering EH, Mayo K, et al. Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Hum Mol Genet. 2012;21:4558–71.CrossRefPubMedPubMedCentral
12.
go back to reference Bezanson J, Edelman A, Karpinski S, Shah V. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59:65–98.CrossRef Bezanson J, Edelman A, Karpinski S, Shah V. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59:65–98.CrossRef
14.
15.
16.
go back to reference Bůžková P, Lumley T, Rice K. Permutation and parametric bootstrap tests for gene-gene and gene-environment interactions. Ann Hum Genet. 2011;75:36–45.CrossRefPubMedPubMedCentral Bůžková P, Lumley T, Rice K. Permutation and parametric bootstrap tests for gene-gene and gene-environment interactions. Ann Hum Genet. 2011;75:36–45.CrossRefPubMedPubMedCentral
17.
go back to reference Kooperberg C, Leblanc M. Increasing the power of identifying gene x gene interactions in genome-wide association studies. Genet Epidemiol. 2008;32:255–63.CrossRefPubMedPubMedCentral Kooperberg C, Leblanc M. Increasing the power of identifying gene x gene interactions in genome-wide association studies. Genet Epidemiol. 2008;32:255–63.CrossRefPubMedPubMedCentral
18.
go back to reference Wei W-H, Knott S, Haley CS, de Koning D-J. Controlling false positives in the mapping of epistatic QTL. Heredity (Edinb). 2010;104:401–9.CrossRef Wei W-H, Knott S, Haley CS, de Koning D-J. Controlling false positives in the mapping of epistatic QTL. Heredity (Edinb). 2010;104:401–9.CrossRef
19.
go back to reference Dai JY, Kooperberg C, Leblanc M, Prentice RL. Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction. Biometrika. 2012;99:929–44.CrossRefPubMedPubMedCentral Dai JY, Kooperberg C, Leblanc M, Prentice RL. Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction. Biometrika. 2012;99:929–44.CrossRefPubMedPubMedCentral
20.
go back to reference Hsu L, Jiao S, Dai JY, Hutter C, Peters U, Kooperberg C. Powerful cocktail methods for detecting genome-wide gene-environment interaction. Genet Epidemiol. 2012;36:183–94.CrossRefPubMed Hsu L, Jiao S, Dai JY, Hutter C, Peters U, Kooperberg C. Powerful cocktail methods for detecting genome-wide gene-environment interaction. Genet Epidemiol. 2012;36:183–94.CrossRefPubMed
21.
go back to reference Gauderman WJ, Zhang P, Morrison JL, Lewinger JP. Finding novel genes by testing G × E interactions in a genome-wide association study. Genet Epidemiol. 2013;37:603–13.CrossRefPubMedPubMedCentral Gauderman WJ, Zhang P, Morrison JL, Lewinger JP. Finding novel genes by testing G × E interactions in a genome-wide association study. Genet Epidemiol. 2013;37:603–13.CrossRefPubMedPubMedCentral
22.
23.
go back to reference Routman EJ, Cheverud JM. Gene effects on a quantitative trait: two-locus epistatic effects measured at microsatellite markers and at estimated QTL. Evolution. 1997;51:1654–62.CrossRefPubMed Routman EJ, Cheverud JM. Gene effects on a quantitative trait: two-locus epistatic effects measured at microsatellite markers and at estimated QTL. Evolution. 1997;51:1654–62.CrossRefPubMed
24.
go back to reference Hamon SC, Stengard JH, Clark AG, Salomaa V, Boerwinkle E, Sing CF. Evidence for non-additive influence of single nucleotide polymorphisms within the apolipoprotein E gene. Ann Hum Genet. 2004;68:521–35.CrossRefPubMed Hamon SC, Stengard JH, Clark AG, Salomaa V, Boerwinkle E, Sing CF. Evidence for non-additive influence of single nucleotide polymorphisms within the apolipoprotein E gene. Ann Hum Genet. 2004;68:521–35.CrossRefPubMed
25.
go back to reference Hemani G, Shakhbazov K, Westra H-J, Esko T, Henders AK, McRae AF, et al. Detection and replication of epistasis influencing transcription in humans. Nature. 2014;508:249–53.CrossRefPubMedPubMedCentral Hemani G, Shakhbazov K, Westra H-J, Esko T, Henders AK, McRae AF, et al. Detection and replication of epistasis influencing transcription in humans. Nature. 2014;508:249–53.CrossRefPubMedPubMedCentral
26.
go back to reference Steele NZR, Carr JS, Bonham LW, Geier EG, Damotte V, Miller ZA, et al. Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: a case-control study. PLoS Med. 2017;14:e1002272.CrossRefPubMedPubMedCentral Steele NZR, Carr JS, Bonham LW, Geier EG, Damotte V, Miller ZA, et al. Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: a case-control study. PLoS Med. 2017;14:e1002272.CrossRefPubMedPubMedCentral
28.
go back to reference Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.CrossRefPubMedPubMedCentral Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.CrossRefPubMedPubMedCentral
29.
go back to reference Del-Aguila JL, Fernández MV, Schindler S, Ibanez L, Deming Y, Ma S, et al. Assessment of the genetic architecture of Alzheimer’s disease risk in rate of memory decline. J Alzheimers Dis. 2018;62:745–56.CrossRefPubMed Del-Aguila JL, Fernández MV, Schindler S, Ibanez L, Deming Y, Ma S, et al. Assessment of the genetic architecture of Alzheimer’s disease risk in rate of memory decline. J Alzheimers Dis. 2018;62:745–56.CrossRefPubMed
30.
go back to reference Morris JC, McKeel DW, Fulling K, Torack RM, Berg L. Validation of clinical diagnostic criteria for Alzheimer’s disease. Ann Neurol. 1988;24:17–22.CrossRefPubMed Morris JC, McKeel DW, Fulling K, Torack RM, Berg L. Validation of clinical diagnostic criteria for Alzheimer’s disease. Ann Neurol. 1988;24:17–22.CrossRefPubMed
31.
go back to reference Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4.CrossRefPubMed Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4.CrossRefPubMed
32.
go back to reference Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65:403–13.CrossRefPubMedPubMedCentral Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65:403–13.CrossRefPubMedPubMedCentral
33.
go back to reference Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol. 2010;67:122–31.CrossRefPubMedPubMedCentral Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol. 2010;67:122–31.CrossRefPubMedPubMedCentral
35.
go back to reference Allen-Brady K, Cannon-Albright L, Farnham JM, Teerlink C, Vierhout ME, van Kempen LCL, et al. Identification of six loci associated with pelvic organ prolapse using genome-wide association analysis. Obstet Gynecol. 2011;118:1345–53.CrossRefPubMedPubMedCentral Allen-Brady K, Cannon-Albright L, Farnham JM, Teerlink C, Vierhout ME, van Kempen LCL, et al. Identification of six loci associated with pelvic organ prolapse using genome-wide association analysis. Obstet Gynecol. 2011;118:1345–53.CrossRefPubMedPubMedCentral
36.
go back to reference Nakabayashi K, Shirasawa S. Recent advances in the association studies of autoimmune thyroid disease and the functional characterization of AITD-related transcription factor ZFAT. Nihon Rinsho Meneki Gakkai Kaishi. 2010;33:66–72.CrossRefPubMed Nakabayashi K, Shirasawa S. Recent advances in the association studies of autoimmune thyroid disease and the functional characterization of AITD-related transcription factor ZFAT. Nihon Rinsho Meneki Gakkai Kaishi. 2010;33:66–72.CrossRefPubMed
37.
go back to reference Gagliano SA, Pouget JG, Hardy J, Knight J, Barnes MR, Ryten M, et al. Genomics implicates adaptive and innate immunity in Alzheimer’s and Parkinson’s diseases. Ann Clin Transl Neurol. 2016;3:924–33.CrossRefPubMedPubMedCentral Gagliano SA, Pouget JG, Hardy J, Knight J, Barnes MR, Ryten M, et al. Genomics implicates adaptive and innate immunity in Alzheimer’s and Parkinson’s diseases. Ann Clin Transl Neurol. 2016;3:924–33.CrossRefPubMedPubMedCentral
38.
go back to reference Hu Y-S, Xin J, Hu Y, Zhang L, Wang J. Analyzing the genes related to Alzheimer’s disease via a network and pathway-based approach. Alzheimers Res Ther. 2017;9:29.CrossRefPubMedPubMedCentral Hu Y-S, Xin J, Hu Y, Zhang L, Wang J. Analyzing the genes related to Alzheimer’s disease via a network and pathway-based approach. Alzheimers Res Ther. 2017;9:29.CrossRefPubMedPubMedCentral
39.
go back to reference International Genomics of Alzheimer’s Disease Consortium (IGAP). Convergent genetic and expression data implicate immunity in Alzheimer’s disease. Alzheimers Dement. 2015;11:658–71.CrossRef International Genomics of Alzheimer’s Disease Consortium (IGAP). Convergent genetic and expression data implicate immunity in Alzheimer’s disease. Alzheimers Dement. 2015;11:658–71.CrossRef
40.
go back to reference Zhou L, Barão S, Laga M, Bockstael K, Borgers M, Gijsen H, et al. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J Biol Chem. 2012;287:25927–40.CrossRefPubMedPubMedCentral Zhou L, Barão S, Laga M, Bockstael K, Borgers M, Gijsen H, et al. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J Biol Chem. 2012;287:25927–40.CrossRefPubMedPubMedCentral
41.
go back to reference Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido TC, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer’s disease. EMBO Mol Med. 2015;7:175–89.CrossRefPubMedPubMedCentral Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido TC, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer’s disease. EMBO Mol Med. 2015;7:175–89.CrossRefPubMedPubMedCentral
42.
go back to reference Barão S, Gärtner A, Leyva-Díaz E, Demyanenko G, Munck S, Vanhoutvin T, et al. Antagonistic effects of BACE1 and APH1B-γ-secretase control axonal guidance by regulating growth cone collapse. Cell Rep. 2015;12:1367–76.CrossRefPubMedPubMedCentral Barão S, Gärtner A, Leyva-Díaz E, Demyanenko G, Munck S, Vanhoutvin T, et al. Antagonistic effects of BACE1 and APH1B-γ-secretase control axonal guidance by regulating growth cone collapse. Cell Rep. 2015;12:1367–76.CrossRefPubMedPubMedCentral
44.
go back to reference Hitt B, Riordan SM, Kukreja L, Eimer WA, Rajapaksha TW, Vassar R. β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J Biol Chem. 2012;287:38408–25.CrossRefPubMedPubMedCentral Hitt B, Riordan SM, Kukreja L, Eimer WA, Rajapaksha TW, Vassar R. β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J Biol Chem. 2012;287:38408–25.CrossRefPubMedPubMedCentral
Metadata
Title
Genome-wide association study for variants that modulate relationships between cerebrospinal fluid amyloid-beta 42, tau, and p-tau levels
Authors
Taylor J. Maxwell
Chris Corcoran
Jorge L. del-Aguila
John P. Budde
Yuetiva Deming
Carlos Cruchaga
Alison M. Goate
John S. K. Kauwe
Alzheimer’s Disease Neuroimaging Initiative
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2018
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-018-0410-y

Other articles of this Issue 1/2018

Alzheimer's Research & Therapy 1/2018 Go to the issue