Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2018

Open Access 01-12-2018 | Research

Alzheimer disease pathology and the cerebrospinal fluid proteome

Authors: Loïc Dayon, Antonio Núñez Galindo, Jérôme Wojcik, Ornella Cominetti, John Corthésy, Aikaterini Oikonomidi, Hugues Henry, Martin Kussmann, Eugenia Migliavacca, India Severin, Gene L. Bowman, Julius Popp

Published in: Alzheimer's Research & Therapy | Issue 1/2018

Login to get access

Abstract

Background

Altered proteome profiles have been reported in both postmortem brain tissues and body fluids of subjects with Alzheimer disease (AD), but their broad relationships with AD pathology, amyloid pathology, and tau-related neurodegeneration have not yet been fully explored. Using a robust automated MS-based proteomic biomarker discovery workflow, we measured cerebrospinal fluid (CSF) proteomes to explore their association with well-established markers of core AD pathology.

Methods

Cross-sectional analysis was performed on CSF collected from 120 older community-dwelling adults with normal (n = 48) or impaired cognition (n = 72). LC-MS quantified hundreds of proteins in the CSF. CSF concentrations of β-amyloid 1–42 (Aβ1–42), tau, and tau phosphorylated at threonine 181 (P-tau181) were determined with immunoassays. First, we explored proteins relevant to biomarker-defined AD. Then, correlation analysis of CSF proteins with CSF markers of amyloid pathology, neuronal injury, and tau hyperphosphorylation (i.e., Aβ1–42, tau, P-tau181) was performed using Pearson’s correlation coefficient and Bonferroni correction for multiple comparisons.

Results

We quantified 790 proteins in CSF samples with MS. Four CSF proteins showed an association with CSF Aβ1–42 levels (p value ≤ 0.05 with correlation coefficient (R) ≥ 0.38). We identified 50 additional CSF proteins associated with CSF tau and 46 proteins associated with CSF P-tau181 (p value ≤ 0.05 with R ≥ 0.37). The majority of those proteins that showed such associations were brain-enriched proteins. Gene Ontology annotation revealed an enrichment for synaptic proteins and proteins originating from reelin-producing cells and the myelin sheath.

Conclusions

We used an MS-based proteomic workflow to profile the CSF proteome in relation to cerebral AD pathology. We report strong evidence of previously reported CSF proteins and several novel CSF proteins specifically associated with amyloid pathology or neuronal injury and tau hyperphosphorylation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aebersold R, Bader GD, Edwards AM, Van Eyk JE, Kussmann M, Qin J, Omenn GS. The biology/disease-driven Human Proteome Project (B/D-HPP): enabling protein research for the life sciences community. J Proteome Res. 2013;12:23–7.CrossRefPubMed Aebersold R, Bader GD, Edwards AM, Van Eyk JE, Kussmann M, Qin J, Omenn GS. The biology/disease-driven Human Proteome Project (B/D-HPP): enabling protein research for the life sciences community. J Proteome Res. 2013;12:23–7.CrossRefPubMed
2.
go back to reference Shi M, Caudle WM, Zhang J. Biomarker discovery in neurodegenerative diseases: a proteomic approach. Neurobiol Dis. 2009;35:157–64.CrossRefPubMed Shi M, Caudle WM, Zhang J. Biomarker discovery in neurodegenerative diseases: a proteomic approach. Neurobiol Dis. 2009;35:157–64.CrossRefPubMed
4.
go back to reference Begcevic I, Brinc D, Drabovich AP, Batruch I, Diamandis EP. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the human protein atlas. Clin Proteomics. 2016;13:11.CrossRefPubMedPubMedCentral Begcevic I, Brinc D, Drabovich AP, Batruch I, Diamandis EP. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the human protein atlas. Clin Proteomics. 2016;13:11.CrossRefPubMedPubMedCentral
5.
go back to reference Fang Q, Strand A, Law W, Faca VM, Fitzgibbon MP, Hamel N, et al. Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Mol Cell Proteomics. 2009;8:451–66.CrossRefPubMedPubMedCentral Fang Q, Strand A, Law W, Faca VM, Fitzgibbon MP, Hamel N, et al. Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Mol Cell Proteomics. 2009;8:451–66.CrossRefPubMedPubMedCentral
7.
go back to reference Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.CrossRefPubMedPubMedCentral Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.CrossRefPubMedPubMedCentral
8.
go back to reference Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92.CrossRefPubMedPubMedCentral Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92.CrossRefPubMedPubMedCentral
9.
go back to reference Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentral Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentral
10.
go back to reference Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.CrossRefPubMed Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.CrossRefPubMed
12.
go back to reference Guldbrandsen A, Vethe H, Farag Y, Oveland E, Garberg H, Berle M, et al. In-depth characterization of the cerebrospinal fluid (CSF) proteome displayed through the CSF proteome resource (CSF-PR). Mol Cell Proteomics. 2014;13:3152–63.CrossRefPubMedPubMedCentral Guldbrandsen A, Vethe H, Farag Y, Oveland E, Garberg H, Berle M, et al. In-depth characterization of the cerebrospinal fluid (CSF) proteome displayed through the CSF proteome resource (CSF-PR). Mol Cell Proteomics. 2014;13:3152–63.CrossRefPubMedPubMedCentral
13.
go back to reference Schutzer SE, Liu T, Natelson BH, Angel TE, Schepmoes AA, Purvine SO, et al. Establishing the proteome of normal human cerebrospinal fluid. PLoS One. 2010;5:e10980.CrossRefPubMedPubMedCentral Schutzer SE, Liu T, Natelson BH, Angel TE, Schepmoes AA, Purvine SO, et al. Establishing the proteome of normal human cerebrospinal fluid. PLoS One. 2010;5:e10980.CrossRefPubMedPubMedCentral
14.
go back to reference Zhang Y, Guo Z, Zou L, Yang Y, Zhang L, Ji N, et al. A comprehensive map and functional annotation of the normal human cerebrospinal fluid proteome. J Proteome. 2015;119:90–9.CrossRef Zhang Y, Guo Z, Zou L, Yang Y, Zhang L, Ji N, et al. A comprehensive map and functional annotation of the normal human cerebrospinal fluid proteome. J Proteome. 2015;119:90–9.CrossRef
15.
go back to reference Dayon L, Kussmann M. Proteomics of human plasma: a critical comparison of analytical workflows in terms of effort, throughput and outcome. EuPA Open Proteom. 2013;1:8–16.CrossRef Dayon L, Kussmann M. Proteomics of human plasma: a critical comparison of analytical workflows in terms of effort, throughput and outcome. EuPA Open Proteom. 2013;1:8–16.CrossRef
16.
go back to reference Cole RN, Ruczinski I, Schulze K, Christian P, Herbrich S, Wu L, et al. The plasma proteome identifies expected and novel proteins correlated with micronutrient status in undernourished Nepalese children. J Nutr. 2013;143:1540–8.CrossRefPubMed Cole RN, Ruczinski I, Schulze K, Christian P, Herbrich S, Wu L, et al. The plasma proteome identifies expected and novel proteins correlated with micronutrient status in undernourished Nepalese children. J Nutr. 2013;143:1540–8.CrossRefPubMed
17.
go back to reference García-Bailo B, Brenner DR, Nielsen D, Lee HJ, Domanski D, Kuzyk M, et al. Dietary patterns and ethnicity are associated with distinct plasma proteomic groups. Am J Clin Nutr. 2012;95:352–61.CrossRefPubMed García-Bailo B, Brenner DR, Nielsen D, Lee HJ, Domanski D, Kuzyk M, et al. Dietary patterns and ethnicity are associated with distinct plasma proteomic groups. Am J Clin Nutr. 2012;95:352–61.CrossRefPubMed
18.
go back to reference Johansson Å, Enroth S, Palmblad M, Deelder AM, Bergquist J, Gyllensten U. Identification of genetic variants influencing the human plasma proteome. Proc Natl Acad Sci U S A. 2013;110:4673–8.CrossRefPubMedPubMedCentral Johansson Å, Enroth S, Palmblad M, Deelder AM, Bergquist J, Gyllensten U. Identification of genetic variants influencing the human plasma proteome. Proc Natl Acad Sci U S A. 2013;110:4673–8.CrossRefPubMedPubMedCentral
19.
go back to reference Lee SE, Stewart CP, Schulze KJ, Cole RN, Wu LSF, Yager JD, et al. The plasma proteome is associated with anthropometric status of undernourished Nepalese school-aged children. J Nutr. 2017;147:304–13.PubMedPubMedCentral Lee SE, Stewart CP, Schulze KJ, Cole RN, Wu LSF, Yager JD, et al. The plasma proteome is associated with anthropometric status of undernourished Nepalese school-aged children. J Nutr. 2017;147:304–13.PubMedPubMedCentral
20.
go back to reference Lee SE, West KP Jr, Cole RN, Schulze KJ, Christian P, Wu LSF, et al. Plasma proteome biomarkers of inflammation in school aged children in Nepal. PLoS One. 2015;10:e0144279.CrossRefPubMedPubMedCentral Lee SE, West KP Jr, Cole RN, Schulze KJ, Christian P, Wu LSF, et al. Plasma proteome biomarkers of inflammation in school aged children in Nepal. PLoS One. 2015;10:e0144279.CrossRefPubMedPubMedCentral
21.
go back to reference Oller Moreno S, Cominetti O, Núñez Galindo A, Irincheeva I, Corthésy J, Astrup A, et al. The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention. Proteomics Clin Appl. 2018;12:1600150.CrossRef Oller Moreno S, Cominetti O, Núñez Galindo A, Irincheeva I, Corthésy J, Astrup A, et al. The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention. Proteomics Clin Appl. 2018;12:1600150.CrossRef
22.
go back to reference Cominetti O, Núñez Galindo A, Corthésy J, Oller Moreno S, Irincheeva I, Valsesia A, et al. Proteomic biomarker discovery in 1000 human plasma samples with mass spectrometry. J Proteome Res. 2016;15:389–99.CrossRefPubMed Cominetti O, Núñez Galindo A, Corthésy J, Oller Moreno S, Irincheeva I, Valsesia A, et al. Proteomic biomarker discovery in 1000 human plasma samples with mass spectrometry. J Proteome Res. 2016;15:389–99.CrossRefPubMed
23.
go back to reference Geyer PE, Wewer Albrechtsen NJ, Tyanova S, Grassl N, Iepsen EW, Lundgren J, et al. Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol Syst Biol. 2016;12:901.CrossRefPubMedPubMedCentral Geyer PE, Wewer Albrechtsen NJ, Tyanova S, Grassl N, Iepsen EW, Lundgren J, et al. Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol Syst Biol. 2016;12:901.CrossRefPubMedPubMedCentral
24.
go back to reference Liu Y, Buil A, Collins BC, Gillet LCJ, Blum LC, Cheng LY, et al. Quantitative variability of 342 plasma proteins in a human twin population. Mol Syst Biol. 2015;11:786.CrossRefPubMedPubMedCentral Liu Y, Buil A, Collins BC, Gillet LCJ, Blum LC, Cheng LY, et al. Quantitative variability of 342 plasma proteins in a human twin population. Mol Syst Biol. 2015;11:786.CrossRefPubMedPubMedCentral
25.
go back to reference Dayon L, Núñez Galindo A, Cominetti O, Corthésy J, Kussmann M. A highly automated shotgun proteomic workflow: clinical scale and robustness for biomarker discovery in blood. Methods Mol Biol. 2017;1619:433–49.CrossRefPubMed Dayon L, Núñez Galindo A, Cominetti O, Corthésy J, Kussmann M. A highly automated shotgun proteomic workflow: clinical scale and robustness for biomarker discovery in blood. Methods Mol Biol. 2017;1619:433–49.CrossRefPubMed
27.
go back to reference Popp J, Oikonomidi A, Tautvydaitė D, Dayon L, Bacher M, Migliavacca E, et al. Markers of neuroinflammation associated with Alzheimer’s disease pathology in older adults. Brain Behav Immun. 2017;62:203–11.CrossRefPubMed Popp J, Oikonomidi A, Tautvydaitė D, Dayon L, Bacher M, Migliavacca E, et al. Markers of neuroinflammation associated with Alzheimer’s disease pathology in older adults. Brain Behav Immun. 2017;62:203–11.CrossRefPubMed
28.
go back to reference Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4.CrossRefPubMed Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4.CrossRefPubMed
29.
go back to reference Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment - beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med. 2004;256:240–6.CrossRefPubMed Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment - beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med. 2004;256:240–6.CrossRefPubMed
30.
go back to reference McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.CrossRefPubMedPubMedCentral McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.CrossRefPubMedPubMedCentral
31.
go back to reference Buschke H, Sliwinski MJ, Kuslansky G, Lipton RB. Diagnosis of early dementia by the double memory test: encoding specificity improves diagnostic sensitivity and specificity. Neurology. 1997;48:989–97.CrossRefPubMed Buschke H, Sliwinski MJ, Kuslansky G, Lipton RB. Diagnosis of early dementia by the double memory test: encoding specificity improves diagnostic sensitivity and specificity. Neurology. 1997;48:989–97.CrossRefPubMed
32.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed
33.
go back to reference Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand. 1983;67:361–70.CrossRefPubMed Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand. 1983;67:361–70.CrossRefPubMed
34.
go back to reference Jorm AF, Jacomb PA. The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): socio-demographic correlates, reliability, validity and some norms. Psychol Med. 1989;19:1015–22.CrossRefPubMed Jorm AF, Jacomb PA. The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): socio-demographic correlates, reliability, validity and some norms. Psychol Med. 1989;19:1015–22.CrossRefPubMed
35.
go back to reference Popp J, Riad M, Freymann K, Jessen F. Diagnostic lumbar puncture performed in the outpatient setting of a memory clinic: frequency and risk factors of post-lumbar puncture headache. Nervenarzt. 2007;78:547–51.CrossRefPubMed Popp J, Riad M, Freymann K, Jessen F. Diagnostic lumbar puncture performed in the outpatient setting of a memory clinic: frequency and risk factors of post-lumbar puncture headache. Nervenarzt. 2007;78:547–51.CrossRefPubMed
36.
go back to reference Núñez Galindo A, Kussmann M, Dayon L. Proteomics of cerebrospinal fluid: throughput and robustness using a scalable automated analysis pipeline for biomarker discovery. Anal Chem. 2015;87:10755–61.CrossRefPubMed Núñez Galindo A, Kussmann M, Dayon L. Proteomics of cerebrospinal fluid: throughput and robustness using a scalable automated analysis pipeline for biomarker discovery. Anal Chem. 2015;87:10755–61.CrossRefPubMed
37.
go back to reference Dayon L, Sanchez JC. Relative protein quantification by MS/MS using the tandem mass tag technology. Methods Mol Biol. 2012;893:115–27.CrossRefPubMed Dayon L, Sanchez JC. Relative protein quantification by MS/MS using the tandem mass tag technology. Methods Mol Biol. 2012;893:115–27.CrossRefPubMed
38.
go back to reference Dayon L, Núñez Galindo A, Corthésy J, Cominetti O, Kussmann M. Comprehensive and scalable highly automated MS-based proteomic workflow for clinical biomarker discovery in human plasma. J Proteome Res. 2014;13:3837–45.CrossRef Dayon L, Núñez Galindo A, Corthésy J, Cominetti O, Kussmann M. Comprehensive and scalable highly automated MS-based proteomic workflow for clinical biomarker discovery in human plasma. J Proteome Res. 2014;13:3837–45.CrossRef
39.
go back to reference Tautvydaitė D, Antonietti JP, Henry H, von Gunten A, Popp J. Relations between personality changes and cerebrospinal fluid biomarkers of Alzheimer’s disease pathology. J Psychiatr Res. 2017;90:12–20.CrossRefPubMed Tautvydaitė D, Antonietti JP, Henry H, von Gunten A, Popp J. Relations between personality changes and cerebrospinal fluid biomarkers of Alzheimer’s disease pathology. J Psychiatr Res. 2017;90:12–20.CrossRefPubMed
40.
go back to reference Duits FH, Teunissen CE, Bouwman FH, Visser PJ, Mattsson N, Zetterberg H, et al. The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimers Dement. 2014;10:713–23.CrossRefPubMed Duits FH, Teunissen CE, Bouwman FH, Visser PJ, Mattsson N, Zetterberg H, et al. The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimers Dement. 2014;10:713–23.CrossRefPubMed
42.
go back to reference Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Ser B Stat Methodol. 2011;73:273–82.CrossRef Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Ser B Stat Methodol. 2011;73:273–82.CrossRef
43.
44.
go back to reference Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef
45.
go back to reference Bateman A, Martin MJ, O’Donovan C, Magrane M, Alpi E, Antunes R, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–69.CrossRef Bateman A, Martin MJ, O’Donovan C, Magrane M, Alpi E, Antunes R, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–69.CrossRef
46.
go back to reference Carbon S, Dietze H, Lewis SE, Mungall CJ, Munoz-Torres MC, Basu S, et al. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res. 2017;45:D331–8.CrossRef Carbon S, Dietze H, Lewis SE, Mungall CJ, Munoz-Torres MC, Basu S, et al. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res. 2017;45:D331–8.CrossRef
47.
go back to reference Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–61.CrossRefPubMed Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–61.CrossRefPubMed
48.
go back to reference Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.CrossRefPubMed Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.CrossRefPubMed
49.
go back to reference Remnestål J, Just D, Mitsios N, Fredolini C, Mulder J, Schwenk JM, et al. CSF profiling of the human brain enriched proteome reveals associations of neuromodulin and neurogranin to Alzheimer’s disease. Proteomics Clin Appl. 2016;10:1242–53.CrossRefPubMedPubMedCentral Remnestål J, Just D, Mitsios N, Fredolini C, Mulder J, Schwenk JM, et al. CSF profiling of the human brain enriched proteome reveals associations of neuromodulin and neurogranin to Alzheimer’s disease. Proteomics Clin Appl. 2016;10:1242–53.CrossRefPubMedPubMedCentral
50.
go back to reference Scotter EL, Abood ME, Glass M. The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol. 2010;160:480–98.CrossRefPubMedPubMedCentral Scotter EL, Abood ME, Glass M. The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol. 2010;160:480–98.CrossRefPubMedPubMedCentral
51.
go back to reference Stumm C, Hiebel C, Hanstein R, Purrio M, Nagel H, Conrad A, et al. Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer’s disease leads to enhanced cognitive impairment despite of a reduction in amyloid deposition. Neurobiol Aging. 2013;34:2574–84.CrossRefPubMed Stumm C, Hiebel C, Hanstein R, Purrio M, Nagel H, Conrad A, et al. Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer’s disease leads to enhanced cognitive impairment despite of a reduction in amyloid deposition. Neurobiol Aging. 2013;34:2574–84.CrossRefPubMed
52.
go back to reference Swanson A, Willette AA. Neuronal pentraxin 2 predicts medial temporal atrophy and memory decline across the Alzheimer’s disease spectrum. Brain Behav Immun. 2016;58:201–8.CrossRefPubMedPubMedCentral Swanson A, Willette AA. Neuronal pentraxin 2 predicts medial temporal atrophy and memory decline across the Alzheimer’s disease spectrum. Brain Behav Immun. 2016;58:201–8.CrossRefPubMedPubMedCentral
53.
go back to reference Wang J, Xu J, Finnerty J, Furuta M, Steiner DF, Verchere CB. The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site. Diabetes. 2001;50:534–9.CrossRefPubMed Wang J, Xu J, Finnerty J, Furuta M, Steiner DF, Verchere CB. The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site. Diabetes. 2001;50:534–9.CrossRefPubMed
54.
go back to reference Winsky-Sommerer R, Grouselle D, Rougeot C, Laurent V, David JP, Delacourte A, et al. The proprotein convertase PC2 is involved in the maturation of prosomatostatin to somatostatin-14 but not in the somatostatin deficit in Alzheimer’s disease. Neuroscience. 2003;122:437–47.CrossRefPubMed Winsky-Sommerer R, Grouselle D, Rougeot C, Laurent V, David JP, Delacourte A, et al. The proprotein convertase PC2 is involved in the maturation of prosomatostatin to somatostatin-14 but not in the somatostatin deficit in Alzheimer’s disease. Neuroscience. 2003;122:437–47.CrossRefPubMed
55.
go back to reference Nilsson CL, Brinkmalm A, Minthon L, Blennow K, Ekman R. Processing of neuropeptide Y, galanin, and somatostatin in the cerebrospinal fluid of patients with Alzheimer’s disease and frontotemporal dementia. Peptides. 2001;22:2105–12.CrossRefPubMed Nilsson CL, Brinkmalm A, Minthon L, Blennow K, Ekman R. Processing of neuropeptide Y, galanin, and somatostatin in the cerebrospinal fluid of patients with Alzheimer’s disease and frontotemporal dementia. Peptides. 2001;22:2105–12.CrossRefPubMed
56.
go back to reference Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, et al. Somatostatin regulates brain amyloid β peptide Aβ42 through modulation of proteolytic degradation. Nat Med. 2005;11:434–9.CrossRefPubMed Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, et al. Somatostatin regulates brain amyloid β peptide Aβ42 through modulation of proteolytic degradation. Nat Med. 2005;11:434–9.CrossRefPubMed
57.
go back to reference Baloyannis SJ. Morphological and morphometric alterations of Cajal-Retzius cells in early cases of Alzheimer’s disease: a Golgi and electron microscope study. Int J Neurosci. 2005;115:965–80.CrossRefPubMed Baloyannis SJ. Morphological and morphometric alterations of Cajal-Retzius cells in early cases of Alzheimer’s disease: a Golgi and electron microscope study. Int J Neurosci. 2005;115:965–80.CrossRefPubMed
58.
go back to reference Kocherhans S, Madhusudan A, Doehner J, Breu KS, Nitsch RM, Fritschy JM, Knuesel I. Reduced reelin expression accelerates amyloid-β plaque formation and tau pathology in transgenic Alzheimer’s disease mice. J Neurosci. 2010;30:9228–40.CrossRefPubMed Kocherhans S, Madhusudan A, Doehner J, Breu KS, Nitsch RM, Fritschy JM, Knuesel I. Reduced reelin expression accelerates amyloid-β plaque formation and tau pathology in transgenic Alzheimer’s disease mice. J Neurosci. 2010;30:9228–40.CrossRefPubMed
59.
go back to reference Dean DC III, Hurley SA, Kecskemeti SR, O’Grady JP, Canda C, Davenport-Sis NJ, et al. Association of amyloid pathology with myelin alteration in preclinical Alzheimer disease. JAMA Neurol. 2017;74:41–9.CrossRefPubMedPubMedCentral Dean DC III, Hurley SA, Kecskemeti SR, O’Grady JP, Canda C, Davenport-Sis NJ, et al. Association of amyloid pathology with myelin alteration in preclinical Alzheimer disease. JAMA Neurol. 2017;74:41–9.CrossRefPubMedPubMedCentral
61.
go back to reference De Vos A, Jacobs D, Struyfs H, Fransen E, Andersson K, Portelius E, et al. C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer’s disease. Alzheimers Dement. 2015;11:1461–9.CrossRefPubMed De Vos A, Jacobs D, Struyfs H, Fransen E, Andersson K, Portelius E, et al. C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer’s disease. Alzheimers Dement. 2015;11:1461–9.CrossRefPubMed
62.
go back to reference Forsova OS, Zakharov VV. High-order oligomers of intrinsically disordered brain proteins BASP1 and GAP-43 preserve the structural disorder. FEBS J. 2016;283:1550–69.CrossRefPubMed Forsova OS, Zakharov VV. High-order oligomers of intrinsically disordered brain proteins BASP1 and GAP-43 preserve the structural disorder. FEBS J. 2016;283:1550–69.CrossRefPubMed
63.
go back to reference Musunuri S, Wetterhall M, Ingelsson M, Lannfelt L, Artemenko K, Bergquist J, et al. Quantification of the brain proteome in Alzheimer’s disease using multiplexed mass spectrometry. J Proteome Res. 2014;13:2056–68.CrossRefPubMed Musunuri S, Wetterhall M, Ingelsson M, Lannfelt L, Artemenko K, Bergquist J, et al. Quantification of the brain proteome in Alzheimer’s disease using multiplexed mass spectrometry. J Proteome Res. 2014;13:2056–68.CrossRefPubMed
64.
go back to reference Kim M, Suh J, Romano D, Truong MH, Mullin K, Hooli B, et al. Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate α-secretase activity. Hum Mol Genet. 2009;18:3987–96.CrossRefPubMedPubMedCentral Kim M, Suh J, Romano D, Truong MH, Mullin K, Hooli B, et al. Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate α-secretase activity. Hum Mol Genet. 2009;18:3987–96.CrossRefPubMedPubMedCentral
65.
go back to reference Yuan XZ, Sun S, Tan CC, Yu JT, Tan L. The role of ADAM10 in Alzheimer’s disease. J Alzheimers Dis. 2017;58:303–22.CrossRefPubMed Yuan XZ, Sun S, Tan CC, Yu JT, Tan L. The role of ADAM10 in Alzheimer’s disease. J Alzheimers Dis. 2017;58:303–22.CrossRefPubMed
66.
go back to reference Westwood S, Liu B, Baird AL, Anand S, Nevado-Holgado AJ, Newby D, et al. The influence of insulin resistance on cerebrospinal fluid and plasma biomarkers of Alzheimer’s pathology. Alzheimers Res Ther. 2017;9:31.CrossRefPubMedPubMedCentral Westwood S, Liu B, Baird AL, Anand S, Nevado-Holgado AJ, Newby D, et al. The influence of insulin resistance on cerebrospinal fluid and plasma biomarkers of Alzheimer’s pathology. Alzheimers Res Ther. 2017;9:31.CrossRefPubMedPubMedCentral
Metadata
Title
Alzheimer disease pathology and the cerebrospinal fluid proteome
Authors
Loïc Dayon
Antonio Núñez Galindo
Jérôme Wojcik
Ornella Cominetti
John Corthésy
Aikaterini Oikonomidi
Hugues Henry
Martin Kussmann
Eugenia Migliavacca
India Severin
Gene L. Bowman
Julius Popp
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2018
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-018-0397-4

Other articles of this Issue 1/2018

Alzheimer's Research & Therapy 1/2018 Go to the issue