Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2017

Open Access 01-12-2017 | Research article

Anthropometric multicompartmental model to predict body composition In Brazilian girls

Authors: Dalmo Machado, Analiza Silva, Luis Gobbo, Paula Elias, Francisco J. A. de Paula, Nilo Ramos

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

Anthropometric models remain appropriate alternatives to estimate body composition of peripubertal populations. However, these traditional models do not consider other body components that undergo major changes during peripubertal growth spurt, with restrictions to a multicompartimental approach as a quantitative growth. DXA has great potential to determine pediatric body composition in more than one component (3-C), but has limited use in field settings. Thus, the aim of this study was to propose and validate an anthropometric model for simultaneous estimation of lean soft tissue (LST), bone mineral content (BMC) and fat mass (FM) in healthy girls, from a multivariate approach of densitometric technique, as the criterion method.

Methods

A sample of 84 Brazilian girls (7-17 years) was defined by chronological age and maturity offset. Whole total and regional DXA body scan were performed and, the components were defined (LST, BMC and FM) and considered as dependent variables. Twenty-one anthropometric measures were recorded as independent variables. From a multivariate regression, an anthropometric multicompartmental model was obtained.

Results

It was possible to predict DXA body components with only four predictive measurements: body weight (BW); supra-iliac skinfold (SiSk); horizontal abdominal skinfold (HaSk) and contracted arm circumference (CaCi) with high coefficients of determination and low estimation errors (LST = 0.6662657 BW - 0. 2157279 SiSk - 0.2069373 HaSk + 0.3411678 CaCi - 1.8504187; BMC = 0.0222185 BW - 0.1001097 SiSk - 0.0064539 HaSk - 0.0084785 CaCi + 0.3733974 and FM = 0.3645630 BW + 0.1000325 SiSk - 0.2888978 HaSk - 0.4752146 CaCi + 2.8461916). The cross-validation was confirmed through the sum of squares of residuals (PRESS) method, presenting accurate coefficients (Q2 PRESS from 0.81 to 0.93) and reduced error reliability (SPRESS from 0.01 to 0.30).

Conclusions

When sophisticated instruments are not available, this model provides valid estimates of multicompartmental body composition of girls in healthy Brazilian pediatric populations.
Literature
1.
go back to reference Mulazimoglu O. The relative age effect (RAE) in youth and professional soccer players in Turkey. Anthropologist. 2014;18(2):391–8.CrossRef Mulazimoglu O. The relative age effect (RAE) in youth and professional soccer players in Turkey. Anthropologist. 2014;18(2):391–8.CrossRef
2.
go back to reference Lohman TG, Hingle M, Going SB. Body composition in children. Pediatr Exerc Sci. 2013;25(4):573–90.CrossRefPubMed Lohman TG, Hingle M, Going SB. Body composition in children. Pediatr Exerc Sci. 2013;25(4):573–90.CrossRefPubMed
3.
go back to reference Sardinha LB. Functional Body Composition. Archives of Exercise in Health and Disease. 2012;3(3):183–7.CrossRef Sardinha LB. Functional Body Composition. Archives of Exercise in Health and Disease. 2012;3(3):183–7.CrossRef
4.
go back to reference Deurenberg P, Pieters JJ, Hautvast JG. The assessment of the body fat percentage by skinfold thickness measurements in childhood and young adolescence. Br J Nutr. 1990;63(2):293–303.CrossRefPubMed Deurenberg P, Pieters JJ, Hautvast JG. The assessment of the body fat percentage by skinfold thickness measurements in childhood and young adolescence. Br J Nutr. 1990;63(2):293–303.CrossRefPubMed
5.
go back to reference Weststrate JA, Deurenberg P. Body composition in children: proposal for a method for calculating body fat percentage from total body density or skinfold-thickness measurements. Am J Clin Nutr. 1989;50(5):1104–15.PubMed Weststrate JA, Deurenberg P. Body composition in children: proposal for a method for calculating body fat percentage from total body density or skinfold-thickness measurements. Am J Clin Nutr. 1989;50(5):1104–15.PubMed
6.
go back to reference Wells JC, Fuller NJ, Dewit O, Fewtrell MS, Elia M, Cole TJ. Four-component model of body composition in children: density and hydration of fat-free mass and comparison with simpler models. Am J Clin Nutr. 1999;69(5):904–12.PubMed Wells JC, Fuller NJ, Dewit O, Fewtrell MS, Elia M, Cole TJ. Four-component model of body composition in children: density and hydration of fat-free mass and comparison with simpler models. Am J Clin Nutr. 1999;69(5):904–12.PubMed
7.
go back to reference Silva AM, Fields DA, Sardinha LB. A PRISMA-driven systematic review of predictive equations for assessing fat and fat-free mass in healthy children and adolescents using multicomponent molecular models as the reference method. Journal of obesity. 2013;2013:148696–6. Silva AM, Fields DA, Sardinha LB. A PRISMA-driven systematic review of predictive equations for assessing fat and fat-free mass in healthy children and adolescents using multicomponent molecular models as the reference method. Journal of obesity. 2013;2013:148696–6.
8.
go back to reference Johnson RA, Wichern DW. Applied Multivariate Statistical Analysis. 5th ed. New York: Prentice Hall; 1992. Johnson RA, Wichern DW. Applied Multivariate Statistical Analysis. 5th ed. New York: Prentice Hall; 1992.
9.
go back to reference Nogueira FE. Modelos de regressão multivariada. São Paulo: Universidade de São Paulo; 2007.CrossRef Nogueira FE. Modelos de regressão multivariada. São Paulo: Universidade de São Paulo; 2007.CrossRef
10.
go back to reference Machado DRL, Gobbo LA, Puggina EF, Petroski EL, Barbanti VJ: Anthropometric model to estimate body fat in boys using a multicompartmental approach. In: Children and Exercise XXVIII: The Proceedings of the 28th Pediatric Work Physiology Meeting. Volume 13, edn. Edited by Coelho-e-Silva MJ, Cupido-dos-Santos A, Figueiredo AJ, Armstrong N, Ferreira JP: Routledge; 2013: 165-168. Machado DRL, Gobbo LA, Puggina EF, Petroski EL, Barbanti VJ: Anthropometric model to estimate body fat in boys using a multicompartmental approach. In: Children and Exercise XXVIII: The Proceedings of the 28th Pediatric Work Physiology Meeting. Volume 13, edn. Edited by Coelho-e-Silva MJ, Cupido-dos-Santos A, Figueiredo AJ, Armstrong N, Ferreira JP: Routledge; 2013: 165-168.
11.
go back to reference Machado D, Oikawa S, Barbanti V. The multicomponent anthropometric model for assessing body composition in a male pediatric population: a simultaneous prediction of fat mass, bone mineral content, and lean soft tissue. Journal of obesity. 2013;2013:428135.CrossRefPubMedPubMedCentral Machado D, Oikawa S, Barbanti V. The multicomponent anthropometric model for assessing body composition in a male pediatric population: a simultaneous prediction of fat mass, bone mineral content, and lean soft tissue. Journal of obesity. 2013;2013:428135.CrossRefPubMedPubMedCentral
12.
go back to reference Machado DRL. Análise multivariada da composição corporal em jovens esportistas e não esportistas. São Paulo: Universidade de São Paulo; 2009.CrossRef Machado DRL. Análise multivariada da composição corporal em jovens esportistas e não esportistas. São Paulo: Universidade de São Paulo; 2009.CrossRef
13.
go back to reference Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240–3.CrossRefPubMedPubMedCentral Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240–3.CrossRefPubMedPubMedCentral
14.
go back to reference Norton K, Olds T. Antropométrica. Armed: Porto Alegre; 2005. Norton K, Olds T. Antropométrica. Armed: Porto Alegre; 2005.
15.
go back to reference Lohman TG. Applicability of body composition techniques and constants for children and youths. Exercise and sport sciences reviews. 1986;14:325–57.CrossRefPubMed Lohman TG. Applicability of body composition techniques and constants for children and youths. Exercise and sport sciences reviews. 1986;14:325–57.CrossRefPubMed
16.
go back to reference Healy MJR, Lovaic JA, Mandel SPH, Tanner JM, Schull WJ, Weiner JS: The individual and the group. In: Practical Human Biology. edn. Edited by Weiner JS, Lonnie JA. New York: Academic Press; 1981: 11-23. Healy MJR, Lovaic JA, Mandel SPH, Tanner JM, Schull WJ, Weiner JS: The individual and the group. In: Practical Human Biology. edn. Edited by Weiner JS, Lonnie JA. New York: Academic Press; 1981: 11-23.
17.
go back to reference Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94.PubMed Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94.PubMed
18.
go back to reference Bolfarine H, Bussab WO. Elementos de amostragem. Edgard Blücher: São Paulo; 2005. Bolfarine H, Bussab WO. Elementos de amostragem. Edgard Blücher: São Paulo; 2005.
19.
go back to reference Ellis KJ. Body composition of a young, multiethnic, male population. Am J Clin Nutr. 1997;66(6):1323–31.PubMed Ellis KJ. Body composition of a young, multiethnic, male population. Am J Clin Nutr. 1997;66(6):1323–31.PubMed
20.
go back to reference Myers RH: Classical and modern regression with applications (Duxbury Classic). Duxbury Press, Pacific Grove 2000. Myers RH: Classical and modern regression with applications (Duxbury Classic). Duxbury Press, Pacific Grove 2000.
21.
go back to reference Heymsfield SB, Lohman TG, Wang Z, Going SB. Human body composition. 2nd ed. Human Kinetics: Champaign; 2005. Heymsfield SB, Lohman TG, Wang Z, Going SB. Human body composition. 2nd ed. Human Kinetics: Champaign; 2005.
22.
go back to reference Silva AM, Fields DA, Sardinha LB: A PRISMA-driven systematic review of predictive equations for assessing fat and fat-free mass in healthy children and adolescents using multicomponent molecular models as the reference method. Journal of obesity 2013, 2013 %@ 2090-0708. Silva AM, Fields DA, Sardinha LB: A PRISMA-driven systematic review of predictive equations for assessing fat and fat-free mass in healthy children and adolescents using multicomponent molecular models as the reference method. Journal of obesity 2013, 2013 %@ 2090-0708.
23.
go back to reference Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60(5):709–23.PubMed Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60(5):709–23.PubMed
24.
go back to reference Fields DA, Goran MI, McCrory MA. Body-composition assessment via air-displacement plethysmography in adults and children: a review. Am J Clin Nutr. 2002;75(3):453–67.PubMed Fields DA, Goran MI, McCrory MA. Body-composition assessment via air-displacement plethysmography in adults and children: a review. Am J Clin Nutr. 2002;75(3):453–67.PubMed
25.
go back to reference Minderico CS, Silva AM, Teixeira PJ, Sardinha LB, Hull HR, Fields DA. Validity of air-displacement plethysmography in the assessment of body composition changes in a 16-month weight loss program. Nutrition & Metabolism. 2006;3(1):32–40.CrossRef Minderico CS, Silva AM, Teixeira PJ, Sardinha LB, Hull HR, Fields DA. Validity of air-displacement plethysmography in the assessment of body composition changes in a 16-month weight loss program. Nutrition & Metabolism. 2006;3(1):32–40.CrossRef
26.
go back to reference Braillon PM: Annual changes in bone mineral content and body composition during growth. Horm Res 2002, 60(6):284-290 %@ 0301-0163. Braillon PM: Annual changes in bone mineral content and body composition during growth. Horm Res 2002, 60(6):284-290 %@ 0301-0163.
27.
go back to reference Sun SS, Schubert CM, Liang R, Roche AF, Kulin HE, Lee PA, Himes JH, Chumlea WC. Is sexual maturity occurring earlier among U.S. children? J Adolesc Health. 2005;37(5):345–55.CrossRefPubMed Sun SS, Schubert CM, Liang R, Roche AF, Kulin HE, Lee PA, Himes JH, Chumlea WC. Is sexual maturity occurring earlier among U.S. children? J Adolesc Health. 2005;37(5):345–55.CrossRefPubMed
28.
go back to reference Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr. 1997;17:527–58.CrossRefPubMed Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr. 1997;17:527–58.CrossRefPubMed
29.
go back to reference Sun SS, Chumlea WCP: Statistical Methods..In: Human body composition. edn. Edited by Heymsfield SB, Lohman TG, Wang Z, Going BF. Champaign: Human Kinetics; 2005: 151-160. Sun SS, Chumlea WCP: Statistical Methods..In: Human body composition. edn. Edited by Heymsfield SB, Lohman TG, Wang Z, Going BF. Champaign: Human Kinetics; 2005: 151-160.
30.
go back to reference Kyle UG, Piccoli A, Pichard C. Body composition measurements: interpretation finally made easy for clinical use. Curr Opin Clin Nutr Metab Care. 2003;6(4):387–93.PubMed Kyle UG, Piccoli A, Pichard C. Body composition measurements: interpretation finally made easy for clinical use. Curr Opin Clin Nutr Metab Care. 2003;6(4):387–93.PubMed
31.
go back to reference Valente-dos-Santos J, Coelho-e-Silva MJ, Machado-Rodrigues AM, Elferink-Gemser MT, Malina RM, Petroski ÉL, Minderico CS, Silva AM, Baptista F, Sardinha LB: Prediction equation for lower limbs lean soft tissue in circumpubertal boys using anthropometry and biological maturation. PloS one 2014, 9(9):e107219 %@ 101932-106203. Valente-dos-Santos J, Coelho-e-Silva MJ, Machado-Rodrigues AM, Elferink-Gemser MT, Malina RM, Petroski ÉL, Minderico CS, Silva AM, Baptista F, Sardinha LB: Prediction equation for lower limbs lean soft tissue in circumpubertal boys using anthropometry and biological maturation. PloS one 2014, 9(9):e107219 %@ 101932-106203.
32.
go back to reference Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5 Suppl):1169–75.PubMed Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5 Suppl):1169–75.PubMed
33.
go back to reference Ellis KJ, Shypailo RJ, Abrams SA, Wong WW: The reference child and adolescent models of body composition. A contemporary comparison. Ann N Y Acad Sci 2000, 904:374-382. Ellis KJ, Shypailo RJ, Abrams SA, Wong WW: The reference child and adolescent models of body composition. A contemporary comparison. Ann N Y Acad Sci 2000, 904:374-382.
34.
go back to reference Holiday DB, Ballard JE, McKeown BC. PRESS-related statistics: regression tools for cross-validation and case diagnostics. Med Sci Sports Exerc. 1995;27(4):612–20.CrossRefPubMed Holiday DB, Ballard JE, McKeown BC. PRESS-related statistics: regression tools for cross-validation and case diagnostics. Med Sci Sports Exerc. 1995;27(4):612–20.CrossRefPubMed
35.
go back to reference Sardinha LB, Teixeira PJ, Guedes DP, Going SB, Lohman TG. Subcutaneous central fat is associated with cardiovascular risk factors in men independently of total fatness and fitness. Metabolism. 2000;49(11):1379–85.CrossRefPubMed Sardinha LB, Teixeira PJ, Guedes DP, Going SB, Lohman TG. Subcutaneous central fat is associated with cardiovascular risk factors in men independently of total fatness and fitness. Metabolism. 2000;49(11):1379–85.CrossRefPubMed
36.
go back to reference Wells JC, Williams JE, Chomtho S, Darch T, Grijalva-Eternod C, Kennedy K, Haroun D, Wilson C, Cole TJ, Fewtrell MS. Pediatric reference data for lean tissue properties: density and hydration from age 5 to 20 y. Am J Clin Nutr. 2010;91(3):610–8.CrossRefPubMed Wells JC, Williams JE, Chomtho S, Darch T, Grijalva-Eternod C, Kennedy K, Haroun D, Wilson C, Cole TJ, Fewtrell MS. Pediatric reference data for lean tissue properties: density and hydration from age 5 to 20 y. Am J Clin Nutr. 2010;91(3):610–8.CrossRefPubMed
37.
go back to reference Goncalves EM, Silva AM, Santos DA, Lemos-Marini SH, de Oliveira SA, Mendes-Dos-Santos CT, De-Mello MP, Guerra-Junior G. Accuracy of anthropometric measurements in estimating fat mass in individuals with 21-hydroxylase deficiency. Nutrition. 2012;28(10):984–90.CrossRefPubMed Goncalves EM, Silva AM, Santos DA, Lemos-Marini SH, de Oliveira SA, Mendes-Dos-Santos CT, De-Mello MP, Guerra-Junior G. Accuracy of anthropometric measurements in estimating fat mass in individuals with 21-hydroxylase deficiency. Nutrition. 2012;28(10):984–90.CrossRefPubMed
38.
go back to reference Goran MI, Driscoll P, Johnson R, Nagy TR, Hunter G. Cross-calibration of body-composition techniques against dual-energy X-ray absorptiometry in young children. Am J Clin Nutr. 1996;63(3):299–305.PubMed Goran MI, Driscoll P, Johnson R, Nagy TR, Hunter G. Cross-calibration of body-composition techniques against dual-energy X-ray absorptiometry in young children. Am J Clin Nutr. 1996;63(3):299–305.PubMed
39.
go back to reference Dezenberg CV, Nagy TR, Gower BA, Johnson R, Goran MI. Predicting body composition from anthropometry in pre-adolescent children. Int J Obes Relat Metab Disord. 1999;23(3):253–9.CrossRefPubMed Dezenberg CV, Nagy TR, Gower BA, Johnson R, Goran MI. Predicting body composition from anthropometry in pre-adolescent children. Int J Obes Relat Metab Disord. 1999;23(3):253–9.CrossRefPubMed
40.
go back to reference Morrison JA, Guo SS, Specker B, Chumlea WC, Yanovski SZ, Yanovski JA. Assessing the body composition of 6-17-year-old Black and White girls in field studies. Am J Hum Biol. 2001;13(2):249–54.CrossRefPubMed Morrison JA, Guo SS, Specker B, Chumlea WC, Yanovski SZ, Yanovski JA. Assessing the body composition of 6-17-year-old Black and White girls in field studies. Am J Hum Biol. 2001;13(2):249–54.CrossRefPubMed
41.
go back to reference Bray GA, DeLany JP, Volaufova J, Harsha DW, Champagne C. Prediction of body fat in 12-y-old African American and white children: evaluation of methods. Am J Clin Nutr. 2002;76(5):980–90.PubMed Bray GA, DeLany JP, Volaufova J, Harsha DW, Champagne C. Prediction of body fat in 12-y-old African American and white children: evaluation of methods. Am J Clin Nutr. 2002;76(5):980–90.PubMed
42.
go back to reference Toombs RJ, Ducher G, Shepherd JA, De Souza MJ. The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity (Silver Spring). 2011;20(1):30–9.CrossRef Toombs RJ, Ducher G, Shepherd JA, De Souza MJ. The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity (Silver Spring). 2011;20(1):30–9.CrossRef
43.
go back to reference Toomey CM, McCormack WG, Jakeman P. The effect of hydration status on the measurement of lean tissue mass by dual-energy X-ray absorptiometry. Eur J Appl Physiol. 2017;117(3):567–74.CrossRefPubMed Toomey CM, McCormack WG, Jakeman P. The effect of hydration status on the measurement of lean tissue mass by dual-energy X-ray absorptiometry. Eur J Appl Physiol. 2017;117(3):567–74.CrossRefPubMed
44.
go back to reference Sharma S, JayanandManjhi, Rai D: Correlative study of EEG and Body Hydration across the Menstrual Cycle, vol. 1; 2012. Sharma S, JayanandManjhi, Rai D: Correlative study of EEG and Body Hydration across the Menstrual Cycle, vol. 1; 2012.
Metadata
Title
Anthropometric multicompartmental model to predict body composition In Brazilian girls
Authors
Dalmo Machado
Analiza Silva
Luis Gobbo
Paula Elias
Francisco J. A. de Paula
Nilo Ramos
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2017
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/s13102-017-0088-7

Other articles of this Issue 1/2017

BMC Sports Science, Medicine and Rehabilitation 1/2017 Go to the issue