Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2016

Open Access 01-12-2016 | Research article

Relationship of post-exercise muscle oxygenation and duration of cycling exercise

Authors: Fabian Stöcker, Christoph Von Oldershausen, Florian Kurt Paternoster, Thorsten Schulz, Renate Oberhoffer

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2016

Login to get access

Abstract

Background

Aerobic adaptations following interval training are supposed to be mediated by increased local blood supply. However, knowledge is scarce on the detailed relationship between exercise duration and local post-exercise blood supply and oxygen availability. This study aimed to examine the effect of five different exercise durations, ranging from 30 to 240 s, on post-exercise muscle oxygenation and relative changes in hemoglobin concentration.

Methods

Healthy male subjects (N = 18) performed an experimental protocol of five exercise bouts (30, 60, 90, 120, and 240 s) at 80 % of peak oxygen uptake \( \left({\overset{.}{\mathrm{V}}\mathrm{O}}_{2\mathrm{peak}}\right) \) in a randomized order, separated by 5-min recovery periods. To examine the influence of aerobic fitness, we compared subjects with gas exchange thresholds (GET) above 60 % \( \overset{.}{\mathrm{V}}{\mathrm{O}}_{2\mathrm{peak}} \) (GET60+) with subjects reaching GET below 60 % \( \overset{.}{\mathrm{V}}{\mathrm{O}}_{2\mathrm{peak}} \) (GET60−). \( \overset{.}{\mathrm{V}}{\mathrm{O}}_2 \) and relative changes in concentrations of oxygenated hemoglobin, deoxygenated hemoglobin, and total hemoglobin were continuously measured with near-infrared spectroscopy of the vastus lateralis muscle.

Results

Post-exercise oxygen availability and local blood supply increased significantly until the 90-s exercise duration and reached a plateau thereafter. Considering aerobic fitness, the GET60+ group reached maximum post-exercise oxygen availability earlier (60 s) than the GET60− group (90 s).

Conclusions

Our results suggest that (1) 90 s has evolved as the minimum interval duration to enhance local oxygen availability and blood supply following cycling exercise at 80 % \( \overset{.}{\mathrm{V}}{\mathrm{O}}_{2\mathrm{peak}} \); whereas (2) 60 s is sufficient to trigger the same effects in subjects with GET60 + .
Literature
1.
go back to reference Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013;43:927–54.CrossRefPubMed Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013;43:927–54.CrossRefPubMed
2.
go back to reference Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol. 1996;75:7–13.CrossRef Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol. 1996;75:7–13.CrossRef
3.
go back to reference Talanian JL, Galloway SDR, Heigenhauser GJF, Bonen A, Spriet LL. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol. 2006;102:1439–47.CrossRefPubMed Talanian JL, Galloway SDR, Heigenhauser GJF, Bonen A, Spriet LL. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol. 2006;102:1439–47.CrossRefPubMed
4.
go back to reference Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training. Sports Med. 2002;32:53–73.CrossRefPubMed Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training. Sports Med. 2002;32:53–73.CrossRefPubMed
5.
go back to reference Esfarjani F, Laursen PB. Manipulating high-intensity interval training: effects on VO2 max, the lactate threshold and 3000 m running performance in moderately trained males. J Sci Med Sport. 2007;10:27–35.CrossRefPubMed Esfarjani F, Laursen PB. Manipulating high-intensity interval training: effects on VO2 max, the lactate threshold and 3000 m running performance in moderately trained males. J Sci Med Sport. 2007;10:27–35.CrossRefPubMed
6.
go back to reference Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013;43:313–38.CrossRefPubMed Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013;43:313–38.CrossRefPubMed
7.
go back to reference Fu T-C, Wang C-H, Lin P-S, Hsu C-C, Cherng W-J, Huang S-C, Liu M-H, Chiang C-L, Wang J-S. Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int J Cardiol. 2011;167:41–50.CrossRefPubMed Fu T-C, Wang C-H, Lin P-S, Hsu C-C, Cherng W-J, Huang S-C, Liu M-H, Chiang C-L, Wang J-S. Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int J Cardiol. 2011;167:41–50.CrossRefPubMed
8.
go back to reference Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith D. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. AJP: Endocrinology and Metabolism. 2014;307:E539–52. Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith D. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. AJP: Endocrinology and Metabolism. 2014;307:E539–52.
10.
go back to reference Huonker M, Halle M, Keul J. Structural and functional adaptations of the cardiovascular system by training. Int J Sports Med. 1996;17:S164–72.CrossRefPubMed Huonker M, Halle M, Keul J. Structural and functional adaptations of the cardiovascular system by training. Int J Sports Med. 1996;17:S164–72.CrossRefPubMed
11.
go back to reference Messonnier L, Freund H, Denis C, Dormois D, Dufour A-B, Lacour J-R. Time to exhaustion at VO(2)max is related to the lactate exchange and removal abilities. Int J Sports Med. 2002;23:433–8.CrossRefPubMed Messonnier L, Freund H, Denis C, Dormois D, Dufour A-B, Lacour J-R. Time to exhaustion at VO(2)max is related to the lactate exchange and removal abilities. Int J Sports Med. 2002;23:433–8.CrossRefPubMed
12.
go back to reference Saltin B, Rådegran G, Koskolou MD, Roach RC. Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand. 1998;162:421–36.CrossRefPubMed Saltin B, Rådegran G, Koskolou MD, Roach RC. Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand. 1998;162:421–36.CrossRefPubMed
13.
go back to reference Ferreira LF, Harper AJ, Townsend DK, Lutjemeier BJ, Barstow TJ. Kinetics of estimated human muscle capillary blood flow during recovery from exercise. Exp Physiol. 2005;90:715–26.CrossRefPubMed Ferreira LF, Harper AJ, Townsend DK, Lutjemeier BJ, Barstow TJ. Kinetics of estimated human muscle capillary blood flow during recovery from exercise. Exp Physiol. 2005;90:715–26.CrossRefPubMed
14.
go back to reference Belardinelli R, Barstow TJ, Porszasz J, Wasserman K. Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy. Eur J Appl Physiol. 1995;70:487–92.CrossRef Belardinelli R, Barstow TJ, Porszasz J, Wasserman K. Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy. Eur J Appl Physiol. 1995;70:487–92.CrossRef
15.
go back to reference Tschakovsky ME. Immediate exercise hyperemia: contributions of the muscle pump vs. rapid vasodilation. J Appl Physiol. 2004;97:739–47.CrossRefPubMed Tschakovsky ME. Immediate exercise hyperemia: contributions of the muscle pump vs. rapid vasodilation. J Appl Physiol. 2004;97:739–47.CrossRefPubMed
16.
go back to reference Bhambhani YN, Buckley S, Susaki T. Muscle oxygenation trends during constant work rate cycle exercise in men and women. Med Sci Sports Exerc. 1999;31:90–8.CrossRefPubMed Bhambhani YN, Buckley S, Susaki T. Muscle oxygenation trends during constant work rate cycle exercise in men and women. Med Sci Sports Exerc. 1999;31:90–8.CrossRefPubMed
17.
go back to reference Chance BB, Dait MTM, Zhang CC, Hamaoka TT, Hagerman FF. Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers. Am J Physiol. 1992;262:C766–75.PubMed Chance BB, Dait MTM, Zhang CC, Hamaoka TT, Hagerman FF. Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers. Am J Physiol. 1992;262:C766–75.PubMed
18.
go back to reference Danduran MJ, Dixon JE, Rao RP. Near infrared spectroscopy describes physiologic payback associated with excess postexercise oxygen consumption in healthy controls and children with complex congenital heart disease. Pediatr Cardiol. 2012;33:95–102.CrossRefPubMed Danduran MJ, Dixon JE, Rao RP. Near infrared spectroscopy describes physiologic payback associated with excess postexercise oxygen consumption in healthy controls and children with complex congenital heart disease. Pediatr Cardiol. 2012;33:95–102.CrossRefPubMed
19.
go back to reference Stöcker F, Von Oldershausen C, Paternoster FK, Schulz T, Oberhoffer R. End-exercise ΔHHb/ΔVO 2and post-exercise local oxygen availability in relation to exercise intensity. Clin Physiol Funct Imaging. 2015 [Epub ahead of print]. Stöcker F, Von Oldershausen C, Paternoster FK, Schulz T, Oberhoffer R. End-exercise ΔHHb/ΔVO 2and post-exercise local oxygen availability in relation to exercise intensity. Clin Physiol Funct Imaging. 2015 [Epub ahead of print].
20.
go back to reference Zafeiridis A, Kounoupis A, Dipla K, Kyparos A, Nikolaidis M, Smilios I, Vrabas I. Oxygen delivery and muscle deoxygenation during continuous, long- and short-interval exercise. Int J Sports Med. 2015;36:872–80.CrossRefPubMed Zafeiridis A, Kounoupis A, Dipla K, Kyparos A, Nikolaidis M, Smilios I, Vrabas I. Oxygen delivery and muscle deoxygenation during continuous, long- and short-interval exercise. Int J Sports Med. 2015;36:872–80.CrossRefPubMed
21.
go back to reference Costes F, Prieur F, Féasson L, Geyssant A, Barthélémy J-C, Denis C. Influence of training on NIRS muscle oxygen saturation during submaximal exercise. Med Sci Sports Exerc. 2001;33:1484.CrossRefPubMed Costes F, Prieur F, Féasson L, Geyssant A, Barthélémy J-C, Denis C. Influence of training on NIRS muscle oxygen saturation during submaximal exercise. Med Sci Sports Exerc. 2001;33:1484.CrossRefPubMed
22.
go back to reference Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29:463–87.CrossRefPubMed Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29:463–87.CrossRefPubMed
23.
go back to reference Ihsan M, Abbiss CR, Lipski M, Buchheit M, Watson G. Muscle oxygenation and blood volume reliability during continuous and intermittent running. Int J Sports Med. 2013;34:637–45.CrossRefPubMed Ihsan M, Abbiss CR, Lipski M, Buchheit M, Watson G. Muscle oxygenation and blood volume reliability during continuous and intermittent running. Int J Sports Med. 2013;34:637–45.CrossRefPubMed
24.
go back to reference Watanabe S, Ishii C, Takeyasu N, Ajisaka R, Nishina H, Morimoto T, Sakamoto K, Eda K, Ishiyama M, Saito T, Aihara H, Arai E, Toyama M, Shintomi Y, Yamaguchi I. Assessing muscle vasodilation using near-infrared spectroscopy in cardiac patients. Circ J. 2005;69:802–14.CrossRefPubMed Watanabe S, Ishii C, Takeyasu N, Ajisaka R, Nishina H, Morimoto T, Sakamoto K, Eda K, Ishiyama M, Saito T, Aihara H, Arai E, Toyama M, Shintomi Y, Yamaguchi I. Assessing muscle vasodilation using near-infrared spectroscopy in cardiac patients. Circ J. 2005;69:802–14.CrossRefPubMed
25.
go back to reference Beaver W, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60:2020–7.PubMed Beaver W, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60:2020–7.PubMed
26.
go back to reference Midgley AW, Bentley DJ, Luttikholt H, McNaughton LR, Millet GP. Challenging a dogma of exercise physiology: does an incremental exercise test for valid VO 2 max determination really need to last between 8 and 12 minutes? Sports Med. 2008;38:441–7.CrossRefPubMed Midgley AW, Bentley DJ, Luttikholt H, McNaughton LR, Millet GP. Challenging a dogma of exercise physiology: does an incremental exercise test for valid VO 2 max determination really need to last between 8 and 12 minutes? Sports Med. 2008;38:441–7.CrossRefPubMed
27.
go back to reference Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ. The maximally attainable V̇o 2during exercise in humans: the peak vs. maximum issue. J Appl Physiol. 2003;95:1901–7.CrossRefPubMed Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ. The maximally attainable V̇o 2during exercise in humans: the peak vs. maximum issue. J Appl Physiol. 2003;95:1901–7.CrossRefPubMed
28.
go back to reference Burnley M, Jones AM. Oxygen uptake kinetics as a determinant of sports performance. European J Sport Sc. 2007;7:63–79.CrossRef Burnley M, Jones AM. Oxygen uptake kinetics as a determinant of sports performance. European J Sport Sc. 2007;7:63–79.CrossRef
29.
go back to reference Buchheit M, Ufland P, Haydar B, Laursen PB, Ahmaidi S. Reproducibility and sensitivity of muscle reoxygenation and oxygen uptake recovery kinetics following running exercise in the field. Clin Physiol Funct Imaging. 2011;31:337–46.CrossRefPubMed Buchheit M, Ufland P, Haydar B, Laursen PB, Ahmaidi S. Reproducibility and sensitivity of muscle reoxygenation and oxygen uptake recovery kinetics following running exercise in the field. Clin Physiol Funct Imaging. 2011;31:337–46.CrossRefPubMed
30.
go back to reference Davis SL, Fadel PJ, Cui J, Thomas GD, Crandall CG. Skin blood flow influences near-infrared spectroscopy-derived measurements of tissue oxygenation during heat stress. J Appl Physiol. 2006;100:221–4.CrossRefPubMed Davis SL, Fadel PJ, Cui J, Thomas GD, Crandall CG. Skin blood flow influences near-infrared spectroscopy-derived measurements of tissue oxygenation during heat stress. J Appl Physiol. 2006;100:221–4.CrossRefPubMed
31.
go back to reference Jones AM, Koppo K, Burnley M. Effects of prior exercise on metabolic and gas exchange responses to exercise. Sports Med. 2003;33:949–71.CrossRefPubMed Jones AM, Koppo K, Burnley M. Effects of prior exercise on metabolic and gas exchange responses to exercise. Sports Med. 2003;33:949–71.CrossRefPubMed
32.
go back to reference Bringard A, Layec G, Micallef J-P, Bendahan D, Perrey S. Gas exchange measurements within a magnetic environment: validation of a new system. Respir Physiol Neurobiol. 2012;182:37–46.CrossRefPubMed Bringard A, Layec G, Micallef J-P, Bendahan D, Perrey S. Gas exchange measurements within a magnetic environment: validation of a new system. Respir Physiol Neurobiol. 2012;182:37–46.CrossRefPubMed
33.
go back to reference Kusch M, Vogt A, Hoffmann U. Quality control of various ergospirometric measuring parameters by means of a gas exchange simulating system. J Kardiol. 2003;10:405. Kusch M, Vogt A, Hoffmann U. Quality control of various ergospirometric measuring parameters by means of a gas exchange simulating system. J Kardiol. 2003;10:405.
34.
go back to reference van Beekvelt MC, Borghuis MS, van Engelen BG, Wevers RA, Colier WN. Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci. 2001;101:21–8.CrossRefPubMed van Beekvelt MC, Borghuis MS, van Engelen BG, Wevers RA, Colier WN. Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci. 2001;101:21–8.CrossRefPubMed
35.
go back to reference Greenhouse SW, Geisser S. On methods in the analysis of profile data. Psychometrika. 1959;24:95–112.CrossRef Greenhouse SW, Geisser S. On methods in the analysis of profile data. Psychometrika. 1959;24:95–112.CrossRef
36.
go back to reference Belfry GR, Paterson DH, Murias JM. The effects of short recovery duration on VO2 and muscle deoxygenation during intermittent exercise-Springer. Eur J Appl Physiol. 2012;112:1907–15.CrossRefPubMed Belfry GR, Paterson DH, Murias JM. The effects of short recovery duration on VO2 and muscle deoxygenation during intermittent exercise-Springer. Eur J Appl Physiol. 2012;112:1907–15.CrossRefPubMed
37.
go back to reference Laughlin MH, Korzick DH. Vascular smooth muscle: integrator of vasoactive signals during exercise hyperemia. Med Sci Sports Exerc. 2001;33:81–91.CrossRefPubMed Laughlin MH, Korzick DH. Vascular smooth muscle: integrator of vasoactive signals during exercise hyperemia. Med Sci Sports Exerc. 2001;33:81–91.CrossRefPubMed
38.
go back to reference Murias JM, Kowalchuk JM, Paterson DH. Speeding of VO2 kinetics with endurance training in old and young men is associated with improved matching of local O2 delivery to muscle O2 utilization. J Appl Physiol. 2010;108:913–22.CrossRefPubMedPubMedCentral Murias JM, Kowalchuk JM, Paterson DH. Speeding of VO2 kinetics with endurance training in old and young men is associated with improved matching of local O2 delivery to muscle O2 utilization. J Appl Physiol. 2010;108:913–22.CrossRefPubMedPubMedCentral
39.
go back to reference Haram PM, Adams V, Kemi OJ, Brubakk AO, Hambrecht R, Ellingsen O, Wisløff U. Time-course of endothelial adaptation following acute and regular exercise. Eur J Cardiovasc Prev Rehabil. 2006;13:585–91.CrossRefPubMed Haram PM, Adams V, Kemi OJ, Brubakk AO, Hambrecht R, Ellingsen O, Wisløff U. Time-course of endothelial adaptation following acute and regular exercise. Eur J Cardiovasc Prev Rehabil. 2006;13:585–91.CrossRefPubMed
40.
go back to reference Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95:549–601.CrossRefPubMedPubMedCentral Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95:549–601.CrossRefPubMedPubMedCentral
41.
42.
go back to reference Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training: molecular mechanisms. Circulation. 2010;122:1221–38.CrossRefPubMed Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training: molecular mechanisms. Circulation. 2010;122:1221–38.CrossRefPubMed
43.
go back to reference Buchheit M, Ufland P. Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. Eur J Appl Physiol. 2010;111:293–301.CrossRefPubMed Buchheit M, Ufland P. Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. Eur J Appl Physiol. 2010;111:293–301.CrossRefPubMed
44.
go back to reference Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265:E380–91.PubMed Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265:E380–91.PubMed
45.
go back to reference Horowitz JF. Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol Metab. 2003;14:386–92.CrossRefPubMed Horowitz JF. Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol Metab. 2003;14:386–92.CrossRefPubMed
46.
go back to reference Laaksonen MS, Kemppainen J, Kyröläinen H, Knuuti J, Nuutila P, Kalliokoski KK. Regional differences in blood flow, glucose uptake and fatty acid uptake within quadriceps femoris muscle during dynamic knee-extension exercise. Eur J Appl Physiol. 2013;113:1775–82.CrossRefPubMed Laaksonen MS, Kemppainen J, Kyröläinen H, Knuuti J, Nuutila P, Kalliokoski KK. Regional differences in blood flow, glucose uptake and fatty acid uptake within quadriceps femoris muscle during dynamic knee-extension exercise. Eur J Appl Physiol. 2013;113:1775–82.CrossRefPubMed
47.
go back to reference Kimber NE, Cameron-Smith D, McGee SL, Hargreaves M. Skeletal muscle fat metabolism after exercise in humans: influence of fat availability. J Appl Physiol. 2013;114:1577–85.CrossRefPubMed Kimber NE, Cameron-Smith D, McGee SL, Hargreaves M. Skeletal muscle fat metabolism after exercise in humans: influence of fat availability. J Appl Physiol. 2013;114:1577–85.CrossRefPubMed
Metadata
Title
Relationship of post-exercise muscle oxygenation and duration of cycling exercise
Authors
Fabian Stöcker
Christoph Von Oldershausen
Florian Kurt Paternoster
Thorsten Schulz
Renate Oberhoffer
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2016
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/s13102-016-0036-y

Other articles of this Issue 1/2016

BMC Sports Science, Medicine and Rehabilitation 1/2016 Go to the issue