Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2016

Open Access 01-12-2016 | Research article

Comparison of three activity monitors for estimating sedentary time among children

Authors: Jarle Stålesen, Frøydis Nordgård Vik, Bjørge Herman Hansen, Sveinung Berntsen

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2016

Login to get access

Abstract

Background

Time spent sedentary appears to be associated with several health outcomes in adults, but findings are inconsistent in children. Further, the assessment of sedentary time represents a major challenge. The objectives of the present study were to determine whether 1) ActiGraph GT3X+, ActivPAL and SenseWear Armband Pro3 (SWA) provide comparable estimates of sedentary time in 9–12-year-old children, 2) these devices are valid compared with direct observation, and 3) ActivPAL discriminates between sitting and standing behavior.

Methods

The sample was 67 children. Data were collected during three consecutive days in November 2012. To test the activity monitors in contexts related to physical and sedentary activities commonly performed by children, the children participated in sessions of activity while sitting (watching television, playing video games and tossing a ball while sitting) and standing (musical chairs, active video gaming and tossing a ball) while wearing three different activity monitors at the same time. All activity sessions were observed by two researchers. Differences between monitors were determined using Friedman’s two-way analysis of variance by rank order.

Results

Minutes of estimated sedentary time differed across device brands during combined sitting activities: SWA vs. ActiGraph GT3X+ (P = 0.048), SWA vs. ActivPAL, (P < 0.001) and ActiGraph GT3X+ vs. ActivPAL (P = 0.002). Out of 12 min in total of combined recorded sitting activity, SWA reported a median of 6 min (95 % Confidence Interval [CI] = 5.0, 7.0), ActiGraph GT3X+ 7 min (7.0, 8.0) and ActivPAL 10 min (8.6, 10.8) as sedentary time. ActivPAL recorded 3.7 (2.4, 4.0) minutes of the non-sitting activities ‘musical chairs’, 4.0 (4.0, 4.0) minutes in ‘standing ball toss’; and 4.0 (2.7, 4.0) minutes in ‘active video gaming’ as sitting time.

Conclusion

Recorded sedentary time varied among the monitors GT3X+, SWA and ActivPAL, and misclassification of standing activities as sitting activities were apparent for ActivPAL in certain activities.
Literature
1.
go back to reference Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Breaks in sedentary time: Beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–6.CrossRefPubMed Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Breaks in sedentary time: Beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–6.CrossRefPubMed
2.
go back to reference Chinapaw MJM, Proper KI, Brug J, van Mechelen W, Singh AS. Relationship between young peoples’ sedentary behaviour and biomedical health indicators : a systematic review of prospective studies. Obes Rev. 2011;12(7):e621.CrossRefPubMed Chinapaw MJM, Proper KI, Brug J, van Mechelen W, Singh AS. Relationship between young peoples’ sedentary behaviour and biomedical health indicators : a systematic review of prospective studies. Obes Rev. 2011;12(7):e621.CrossRefPubMed
3.
go back to reference Cliff D, Okely T, Burrows T, Morgan P, Collins C, Jones R, et al. Levels and bouts of sedentary behaviour and physical activity : Associations with cardio - metabolic health in overweight and obese children. J Sci Med Sport. 2012;15(supplement):S42. Cliff D, Okely T, Burrows T, Morgan P, Collins C, Jones R, et al. Levels and bouts of sedentary behaviour and physical activity : Associations with cardio - metabolic health in overweight and obese children. J Sci Med Sport. 2012;15(supplement):S42.
4.
go back to reference Tremblay MS, Leblanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, et al. Systematic review of sedentary behaviour and health indicators in school - aged children and youth. Int J Behav Nutr Phys Act. 2011;8(1):98. Tremblay MS, Leblanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, et al. Systematic review of sedentary behaviour and health indicators in school - aged children and youth. Int J Behav Nutr Phys Act. 2011;8(1):98.
5.
go back to reference Ford ES, Kohl 3rd HW, Mokdad AH, Ajani UA. Sedentary behavior, physical activity, and the metabolic syndrome among U.S. adults. Obes Res. 2005;13(3):608–14. Ford ES, Kohl 3rd HW, Mokdad AH, Ajani UA. Sedentary behavior, physical activity, and the metabolic syndrome among U.S. adults. Obes Res. 2005;13(3):608–14.
6.
go back to reference Schmitz KH, Harnack L, Fulton JE, Jacobs DR Jr, Gao S, Lytle LA, et al. Reliability and validity of a brief questionnaire to assess television viewing and computer use by middle school children. J Sch Health. 2004;74(9):370–7. Schmitz KH, Harnack L, Fulton JE, Jacobs DR Jr, Gao S, Lytle LA, et al. Reliability and validity of a brief questionnaire to assess television viewing and computer use by middle school children. J Sch Health. 2004;74(9):370–7.
7.
go back to reference Robinson TN. Reducing children’s television viewing to prevent obesity: a randomized controlled trial. JAMA. 1999;282(16):1561–7.CrossRefPubMed Robinson TN. Reducing children’s television viewing to prevent obesity: a randomized controlled trial. JAMA. 1999;282(16):1561–7.CrossRefPubMed
8.
go back to reference Colley RC, Garriguet D, Janssen I, Wong SL, Saunders TJ, Carson V et al. The association between accelerometer - measured patterns of sedentary time and health risk in children and youth : results from the Canadian health measures survey. BMC Public Health. 2013;13(1):1. Colley RC, Garriguet D, Janssen I, Wong SL, Saunders TJ, Carson V et al. The association between accelerometer - measured patterns of sedentary time and health risk in children and youth : results from the Canadian health measures survey. BMC Public Health. 2013;13(1):1.
9.
go back to reference Carson V, Janssen I. Volume, patterns, and types of sedentary behavior and cardio - metabolic health in children and adolescents : a cross - sectional study. BMC Public Health. 2011;11(1):274.CrossRefPubMedPubMedCentral Carson V, Janssen I. Volume, patterns, and types of sedentary behavior and cardio - metabolic health in children and adolescents : a cross - sectional study. BMC Public Health. 2011;11(1):274.CrossRefPubMedPubMedCentral
10.
go back to reference Froberg A, Raustorp A. Objectively measured sedentary behaviour and cardio-metabolic risk in youth: a review of evidence. Eur J Pediatr. 2014;173(7):845–60.CrossRefPubMed Froberg A, Raustorp A. Objectively measured sedentary behaviour and cardio-metabolic risk in youth: a review of evidence. Eur J Pediatr. 2014;173(7):845–60.CrossRefPubMed
11.
go back to reference Bouten CV, Westerterp KR, Verduin M, Janssen JD. Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc. 1994;26(12):1516.CrossRefPubMed Bouten CV, Westerterp KR, Verduin M, Janssen JD. Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc. 1994;26(12):1516.CrossRefPubMed
12.
go back to reference Arvidsson D, Slinde F, Larsson S, Hulthén L. Energy cost of physical activities in children: validation of SenseWear Armband. Med Sci Sports Exerc. 2007;39(11):2076–84. Arvidsson D, Slinde F, Larsson S, Hulthén L. Energy cost of physical activities in children: validation of SenseWear Armband. Med Sci Sports Exerc. 2007;39(11):2076–84.
13.
go back to reference Calabró MA, Stewart JM, Welk GJ. Validation of pattern - recognition monitors in children using doubly labeled water. Med Sci Sports Exerc. 2013. Calabró MA, Stewart JM, Welk GJ. Validation of pattern - recognition monitors in children using doubly labeled water. Med Sci Sports Exerc. 2013.
14.
go back to reference Rosenkranz RR, Lubans DR, Peralta LR, Bennie A, Sanders T, Lonsdale C. A cluster-randomized controlled trial of strategies to increase adolescents’ physical activity and motivation during physical education lessons: the Motivating Active Learning in Physical Education (MALP) trial. BMC Public Health. 2012;12(1):834. Rosenkranz RR, Lubans DR, Peralta LR, Bennie A, Sanders T, Lonsdale C. A cluster-randomized controlled trial of strategies to increase adolescents’ physical activity and motivation during physical education lessons: the Motivating Active Learning in Physical Education (MALP) trial. BMC Public Health. 2012;12(1):834.
15.
go back to reference Hinckson EA, Aminian S, Ikeda E, Stewart T, Oliver M, Duncan S, et al. Acceptability of standing workstations in elementary schools: a pilot study. Prev Med. 2013;56(1):82–5. Hinckson EA, Aminian S, Ikeda E, Stewart T, Oliver M, Duncan S, et al. Acceptability of standing workstations in elementary schools: a pilot study. Prev Med. 2013;56(1):82–5.
16.
go back to reference Martin A, McNeill M, Penpraze V, Dall P, Granat M, Paton JY, et al. Objective measurement of habitual sedentary behavior in pre-school children: comparison of activPAL With Actigraph monitors. Pediatr Exerc Sci. 2011;23(4):468–76. Martin A, McNeill M, Penpraze V, Dall P, Granat M, Paton JY, et al. Objective measurement of habitual sedentary behavior in pre-school children: comparison of activPAL With Actigraph monitors. Pediatr Exerc Sci. 2011;23(4):468–76.
17.
go back to reference Dowd KP, Harrington DM, Donnelly AE. Criterion and concurrent validity of the activPAL™ professional physical activity monitor in adolescent females. PLoS One. 2012;7(10):e47633.CrossRefPubMedPubMedCentral Dowd KP, Harrington DM, Donnelly AE. Criterion and concurrent validity of the activPAL™ professional physical activity monitor in adolescent females. PLoS One. 2012;7(10):e47633.CrossRefPubMedPubMedCentral
18.
go back to reference Arvidsson D, Slinde F, Larsson S, Hulthén L. Energy cost in children assessed by multisensor activity monitors. Med Sci Sports Exerc. 2009;41(3):603–11. Arvidsson D, Slinde F, Larsson S, Hulthén L. Energy cost in children assessed by multisensor activity monitors. Med Sci Sports Exerc. 2009;41(3):603–11.
19.
go back to reference Calabro MA, Welk GJ, Eisenmann JC. Validation of the SenseWear Pro Armband algorithms in children. Med Sci Sports Exerc. 2009;41(9):1714–20.CrossRefPubMed Calabro MA, Welk GJ, Eisenmann JC. Validation of the SenseWear Pro Armband algorithms in children. Med Sci Sports Exerc. 2009;41(9):1714–20.CrossRefPubMed
20.
go back to reference Crouter SE, Horton M, Bassett Jr DR. Validity of ActiGraph child - specific equations during various physical activities. Med Sci Sports Exerc. 2013;45:1403–9.CrossRefPubMedPubMedCentral Crouter SE, Horton M, Bassett Jr DR. Validity of ActiGraph child - specific equations during various physical activities. Med Sci Sports Exerc. 2013;45:1403–9.CrossRefPubMedPubMedCentral
21.
go back to reference Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.
22.
go back to reference Aminian S, Hinckson EA. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children. Int J Behav Nutr Phys Act. 2012;9:119.CrossRefPubMedPubMedCentral Aminian S, Hinckson EA. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children. Int J Behav Nutr Phys Act. 2012;9:119.CrossRefPubMedPubMedCentral
23.
go back to reference Harrington DM, Dowd KP, Tudor-Locke C, Donnelly AE. A steps/minute value for moderate intensity physical activity in adolescent females. Pediatr Exerc Sci. 2012;24(3):399–408. Harrington DM, Dowd KP, Tudor-Locke C, Donnelly AE. A steps/minute value for moderate intensity physical activity in adolescent females. Pediatr Exerc Sci. 2012;24(3):399–408.
24.
go back to reference Hänggi JM, Phillips LR, Rowlands AV. Original research : Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. J Sci Med Sport. 2012;16(1):40.CrossRefPubMed Hänggi JM, Phillips LR, Rowlands AV. Original research : Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. J Sci Med Sport. 2012;16(1):40.CrossRefPubMed
25.
go back to reference Davies G, Reilly JJ, McGowan AJ, Dall PM, Granat MH, Paton JY. Validity, practical utility, and reliability of the acfiVPAL™ in preschool children. Med Sci Sports Exerc. 2012;44(4):761–9. Davies G, Reilly JJ, McGowan AJ, Dall PM, Granat MH, Paton JY. Validity, practical utility, and reliability of the acfiVPAL™ in preschool children. Med Sci Sports Exerc. 2012;44(4):761–9.
26.
go back to reference Harrington DM, Welk GJ, Donnelly AE. Validation of MET estimates and step measurement using the ActivPAL physical activity logger. J Sports Sci. 2011;29(6):627–33.CrossRefPubMed Harrington DM, Welk GJ, Donnelly AE. Validation of MET estimates and step measurement using the ActivPAL physical activity logger. J Sports Sci. 2011;29(6):627–33.CrossRefPubMed
27.
go back to reference Soric M, Turkalj M, Kucic D, Marusic I, Plavec D, Misigoj-Durakovic M. Validation of a multi-sensor activity monitor for assessing sleep in children and adolescents. Sleep Med. 2013;14(2):201–5. Soric M, Turkalj M, Kucic D, Marusic I, Plavec D, Misigoj-Durakovic M. Validation of a multi-sensor activity monitor for assessing sleep in children and adolescents. Sleep Med. 2013;14(2):201–5.
28.
go back to reference Dorminy CA, Choi L, Akohoue SA, Chen KY, Buchowski MS. Validity of a multisensor armband in estimating 24-h energy expenditure in children. Med Sci Sports Exerc. 2008;40(4):699–706. Dorminy CA, Choi L, Akohoue SA, Chen KY, Buchowski MS. Validity of a multisensor armband in estimating 24-h energy expenditure in children. Med Sci Sports Exerc. 2008;40(4):699–706.
29.
go back to reference Trost SGWR, Okely AD. Predictive validity of three actigraph energy expenditure equations for children. Med Sci Sports Exerc. 2006;38(2):380.CrossRefPubMed Trost SGWR, Okely AD. Predictive validity of three actigraph energy expenditure equations for children. Med Sci Sports Exerc. 2006;38(2):380.CrossRefPubMed
30.
go back to reference Kim Y, Lee JM, Peters BP, Gaesser GA, Welk GJ. Examination of different accelerometer cut-points for assessing sedentary behaviors in children. PLoS One. 2014;9(4):e90630. Kim Y, Lee JM, Peters BP, Gaesser GA, Welk GJ. Examination of different accelerometer cut-points for assessing sedentary behaviors in children. PLoS One. 2014;9(4):e90630.
Metadata
Title
Comparison of three activity monitors for estimating sedentary time among children
Authors
Jarle Stålesen
Frøydis Nordgård Vik
Bjørge Herman Hansen
Sveinung Berntsen
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2016
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/s13102-016-0028-y

Other articles of this Issue 1/2016

BMC Sports Science, Medicine and Rehabilitation 1/2016 Go to the issue