Skip to main content
Top
Published in: Trials 1/2020

01-12-2020 | Folic Acid | Study protocol

Is natural (6S)-5-methyltetrahydrofolic acid as effective as synthetic folic acid in increasing serum and red blood cell folate concentrations during pregnancy? A proof-of-concept pilot study

Authors: Kelsey M. Cochrane, Chantal Mayer, Angela M. Devlin, Rajavel Elango, Jennifer A. Hutcheon, Crystal D. Karakochuk

Published in: Trials | Issue 1/2020

Login to get access

Abstract

Background

North American health authorities recommend 0.4 mg/day folic acid before conception and throughout pregnancy to reduce the risk of neural tube defects. Folic acid is a synthetic form of folate that must be reduced by dihydrofolate reductase and then further metabolized. Recent evidence suggests that the maximal capacity for this process is limited and unmetabolized folic acid has been detected in the circulation. The biological effects of unmetabolized folic acid are unknown. A natural form of folate, (6S)-5-methyltetrahydrofolic acid (Metafolin®), may be a superior alternative because it does not need to be reduced in the small intestine. Metafolin® is currently used in some prenatal multivitamins; however, it has yet to be evaluated during pregnancy.

Methods/design

This double-blind, randomized trial will recruit 60 pregnant women aged 19–42 years. The women will receive either 0.6 mg/day folic acid or an equimolar dose (0.625 mg/day) of (6S)-5-methyltetrahydrofolic acid for 16 weeks. The trial will be initiated at 8–21 weeks’ gestation (after neural tube closure) to reduce the risk of harm should (6S)-5-methyltetrahydrofolic acid prove less effective. All women will also receive a prenatal multivitamin (not containing folate) to ensure adequacy of other nutrients. Baseline and endline blood samples will be collected to assess primary outcome measures, including serum folate, red blood cell folate and unmetabolized folic acid. The extent to which the change in primary outcomes from baseline to endline differs between treatment groups, controlling for baseline level, will be estimated using linear regression. Participants will have the option to continue supplementing until 1 week postpartum to provide a breastmilk and blood sample. Exploratory analyses will be completed to evaluate breastmilk and postpartum blood folate concentrations.

Discussion

This proof-of-concept trial is needed to obtain estimates of the effect of (6S)-5-methyltetrahydrofolic acid compared to folic acid on circulating biomarkers of folate status during pregnancy. These estimates will inform the design of a definitive trial which will be powered to assess whether (6S)-5-methyltetrahydrofolic acid is as effective as folic acid in raising blood folate concentrations during pregnancy. Ultimately, these findings will inform folate supplementation policies for pregnant women.

Trial registration

ClinicalTrials.gov, ID: NCT04022135. Registered on 14 July 2019.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shane B. Folate and vitamin B12, metabolism: Overview and interaction with riboflavin, vitamin B6, and polymorphisms. Food Nutr Bull. 2008;29(2 Suppl):S5–16; discussion S17–9. Shane B. Folate and vitamin B12, metabolism: Overview and interaction with riboflavin, vitamin B6, and polymorphisms. Food Nutr Bull. 2008;29(2 Suppl):S5–16; discussion S17–9.
2.
go back to reference Pietrzik K, Bailey L, Shane B. Folic acid and l-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2010;49(8):535–48.PubMedCrossRef Pietrzik K, Bailey L, Shane B. Folic acid and l-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2010;49(8):535–48.PubMedCrossRef
3.
go back to reference Blom HJ. Folic acid, methylation and neural tube closure in humans. Birth Defects Res A Clin Mol Teratol. 2009;85:295–302.PubMedCrossRef Blom HJ. Folic acid, methylation and neural tube closure in humans. Birth Defects Res A Clin Mol Teratol. 2009;85:295–302.PubMedCrossRef
4.
go back to reference Food and Nutrition Board, Institute of Medicine. Folate. In: Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. Washington, DC: National Academy Press; 1998. p. 208–11. Food and Nutrition Board, Institute of Medicine. Folate. In: Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. Washington, DC: National Academy Press; 1998. p. 208–11.
5.
go back to reference Health Canada. Multi-vitamin/mineral supplements monograph. 2018. Health Canada. Multi-vitamin/mineral supplements monograph. 2018.
6.
go back to reference Beaudin A, Stover P. Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a minireview. Birth Defects Res A Clin Mol Teratol. 2009;85(4):274–84.PubMedPubMedCentralCrossRef Beaudin A, Stover P. Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a minireview. Birth Defects Res A Clin Mol Teratol. 2009;85(4):274–84.PubMedPubMedCentralCrossRef
7.
go back to reference Douglas Wilson R, Audibert F, Brock JA, Carroll J, Cartier L, Gagnon A, et al. Pre-conception folic acid and multivitamin supplementation for the primary and secondary prevention of neural tube defects and other folic acid-sensitive congenital anomalies. J Obstet Gynaecol Canada. 2015;37(6):534–49.CrossRef Douglas Wilson R, Audibert F, Brock JA, Carroll J, Cartier L, Gagnon A, et al. Pre-conception folic acid and multivitamin supplementation for the primary and secondary prevention of neural tube defects and other folic acid-sensitive congenital anomalies. J Obstet Gynaecol Canada. 2015;37(6):534–49.CrossRef
8.
go back to reference Daly LE, Kirke P, Molloy A, Weir D, Scott J. Folate levels and neural tube defects. JAMA. 1995;274(21):1698–702.PubMedCrossRef Daly LE, Kirke P, Molloy A, Weir D, Scott J. Folate levels and neural tube defects. JAMA. 1995;274(21):1698–702.PubMedCrossRef
9.
go back to reference Group MVSR. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet. 1991;338(8760):131–7.CrossRef Group MVSR. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet. 1991;338(8760):131–7.CrossRef
10.
go back to reference Czeizel AE, Dudás I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med. 1992;327(26):1832–5.PubMedCrossRef Czeizel AE, Dudás I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med. 1992;327(26):1832–5.PubMedCrossRef
11.
go back to reference Ami N, Bernstein M, Boucher F, Rieder M, Parker L. Folate and neural tube defects: the role of supplements and food fortification. Paediatr Child Health. 2016;21(3):145–9.PubMedPubMedCentralCrossRef Ami N, Bernstein M, Boucher F, Rieder M, Parker L. Folate and neural tube defects: the role of supplements and food fortification. Paediatr Child Health. 2016;21(3):145–9.PubMedPubMedCentralCrossRef
12.
go back to reference De Wals P, Tairou F, Van Allen M, Uh S, Lowry B, Sibbald B, et al. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med. 2007;357:135–42.PubMedCrossRef De Wals P, Tairou F, Van Allen M, Uh S, Lowry B, Sibbald B, et al. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med. 2007;357:135–42.PubMedCrossRef
13.
go back to reference Boulet SL, Yang Q, Mai C, Kirby RS, Collins JS, Robbins JM, et al. Trends in the postfortification prevalence of spina bifida and anencephaly in the United States. Birth Defects Res Part A Clin Mol Teratol. 2008;82:527–32.PubMedCrossRef Boulet SL, Yang Q, Mai C, Kirby RS, Collins JS, Robbins JM, et al. Trends in the postfortification prevalence of spina bifida and anencephaly in the United States. Birth Defects Res Part A Clin Mol Teratol. 2008;82:527–32.PubMedCrossRef
15.
go back to reference Dubois L, Diasparra M, Bedard B, Colapinto C, Fontaine-Bisson B, Morisset A, et al. Adequacy of nutritional intake from food and supplements in a cohort of pregnant women in Québec, Canada: The 3D Cohort Study (Design, Develop, Discover). Am J Clin Nutr. 2017;106(2):541–8.PubMedCrossRef Dubois L, Diasparra M, Bedard B, Colapinto C, Fontaine-Bisson B, Morisset A, et al. Adequacy of nutritional intake from food and supplements in a cohort of pregnant women in Québec, Canada: The 3D Cohort Study (Design, Develop, Discover). Am J Clin Nutr. 2017;106(2):541–8.PubMedCrossRef
16.
go back to reference Pfeiffer CM, Johnson CL, Jain RB, Yetley EA, Picciano MF, Rader JI, et al. Trends in blood folate and vitamin B12 concentrations in the United States, 1988-2004. Am J Clin Nutr. 2007;86:718–27.PubMedCrossRef Pfeiffer CM, Johnson CL, Jain RB, Yetley EA, Picciano MF, Rader JI, et al. Trends in blood folate and vitamin B12 concentrations in the United States, 1988-2004. Am J Clin Nutr. 2007;86:718–27.PubMedCrossRef
17.
go back to reference Macfarlane AJ, Greene-finestone LS, Shi Y. Vitamin B12 and homocysteine status in a folate-replete population: results from the Canadian Health Measures Survey 1. Am J Clin Nutr. 2011;94:1079–87.PubMedCrossRef Macfarlane AJ, Greene-finestone LS, Shi Y. Vitamin B12 and homocysteine status in a folate-replete population: results from the Canadian Health Measures Survey 1. Am J Clin Nutr. 2011;94:1079–87.PubMedCrossRef
18.
go back to reference Houghton LA, Sherwood KL, Pawlosky R, Ito S, Connor DLO. [6S]-5-methyltetrahydrofolate is at least as effective as folic acid in preventing a decline in blood folate concentrations during lactation. Am J Clin Nutr. 2006;83:842–50.PubMedCrossRef Houghton LA, Sherwood KL, Pawlosky R, Ito S, Connor DLO. [6S]-5-methyltetrahydrofolate is at least as effective as folic acid in preventing a decline in blood folate concentrations during lactation. Am J Clin Nutr. 2006;83:842–50.PubMedCrossRef
19.
go back to reference Plumptre L, Masih SP, Ly A, Aufreiter S, Sohn K-J, Croxford R, et al. High concentrations of folate and unmetabolized folic acid in a cohort of pregnant Canadian women and umbilical cord blood. Am J Clin Nutr. 2015;102(4):848–57.PubMedCrossRef Plumptre L, Masih SP, Ly A, Aufreiter S, Sohn K-J, Croxford R, et al. High concentrations of folate and unmetabolized folic acid in a cohort of pregnant Canadian women and umbilical cord blood. Am J Clin Nutr. 2015;102(4):848–57.PubMedCrossRef
20.
go back to reference Colapinto CK, Connor DLO, Tremblay MS. Folate status of the population in the Canadian Health Measures Survey. CMJA. 2011;183(2):E100–6. Colapinto CK, Connor DLO, Tremblay MS. Folate status of the population in the Canadian Health Measures Survey. CMJA. 2011;183(2):E100–6.
21.
go back to reference Bailey SW, Ayling JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A. 2009;106(36):15424–9.PubMedPubMedCentralCrossRef Bailey SW, Ayling JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A. 2009;106(36):15424–9.PubMedPubMedCentralCrossRef
22.
go back to reference Palchetti CZ, Paniz C, de Carli E, Marchioni DM, Colli C, Steluti J, et al. Association between serum unmetabolized folic acid concentrations and folic acid from fortified foods. J Am Coll Nutr. 2017;36(7):572–8.PubMedPubMedCentralCrossRef Palchetti CZ, Paniz C, de Carli E, Marchioni DM, Colli C, Steluti J, et al. Association between serum unmetabolized folic acid concentrations and folic acid from fortified foods. J Am Coll Nutr. 2017;36(7):572–8.PubMedPubMedCentralCrossRef
23.
go back to reference Patanwala I, King MJ, Barrett DA, Rose J, Jackson R, Hudson M, et al. Folic acid handling by the human gut: implications for food fortification and supplementation. Am J Clin Nutr. 2014;100:593–9.PubMedPubMedCentralCrossRef Patanwala I, King MJ, Barrett DA, Rose J, Jackson R, Hudson M, et al. Folic acid handling by the human gut: implications for food fortification and supplementation. Am J Clin Nutr. 2014;100:593–9.PubMedPubMedCentralCrossRef
24.
go back to reference Kelly P, McPartlin J, Goggins M, Weir DGW, Scott JM. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am Soc Clin Nutr. 1997;65:1790–5.CrossRef Kelly P, McPartlin J, Goggins M, Weir DGW, Scott JM. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am Soc Clin Nutr. 1997;65:1790–5.CrossRef
25.
go back to reference Sweeney MR, McPartlin J, Weir DG, Scott JM. Measurements of sub-nanomolar concentrations of unmetabolised folic acid in serum. J Chromatogr B Anal Technol Biomed Life Sci. 2003;788(1):187–91.CrossRef Sweeney MR, McPartlin J, Weir DG, Scott JM. Measurements of sub-nanomolar concentrations of unmetabolised folic acid in serum. J Chromatogr B Anal Technol Biomed Life Sci. 2003;788(1):187–91.CrossRef
26.
go back to reference Sweeney MR, McPartlin J, Weir DG, Daly L, Scott JM. Postprandial serum folic acid response to multiple doses of folic acid in fortified bread. Br J Nutr. 2006;95(1):145–51.PubMedCrossRef Sweeney MR, McPartlin J, Weir DG, Daly L, Scott JM. Postprandial serum folic acid response to multiple doses of folic acid in fortified bread. Br J Nutr. 2006;95(1):145–51.PubMedCrossRef
27.
go back to reference Sweeney MR, Mcpartlin J, Scott J. Folic acid fortification and public health: report on threshold doses above which unmetabolised folic acid appear in serum. BMC Public Health. 2007;7(41):1–7. Sweeney MR, Mcpartlin J, Scott J. Folic acid fortification and public health: report on threshold doses above which unmetabolised folic acid appear in serum. BMC Public Health. 2007;7(41):1–7.
28.
go back to reference Tam C, O’Connor D, Koren G. Circulating unmetabolized folic acid: relationship to folate status and effect of supplementation. Obstet Gynecol Int. 2012;2012:1–17.CrossRef Tam C, O’Connor D, Koren G. Circulating unmetabolized folic acid: relationship to folate status and effect of supplementation. Obstet Gynecol Int. 2012;2012:1–17.CrossRef
29.
go back to reference Kelly P, McPartlin J, Scott J. A combined high-performance liquid chromatographic-microbiological assay for serum folic acid. Anal Biochem. 1996;238(2):179–83.PubMedCrossRef Kelly P, McPartlin J, Scott J. A combined high-performance liquid chromatographic-microbiological assay for serum folic acid. Anal Biochem. 1996;238(2):179–83.PubMedCrossRef
30.
go back to reference Fohr IP, Prinz-Langenohl R, Brönstrup A, Bohlmann AM, Nau H, Berthold HK, et al. 5,10-methylenetetrahydrofolate reductase genotype determines the plasma homocysteine-lowering effect of supplementation with 5-methyltetrahydrofolate or folic acid in healthy young women. Am J Clin Nutr. 2002;75(2):275–82.PubMedCrossRef Fohr IP, Prinz-Langenohl R, Brönstrup A, Bohlmann AM, Nau H, Berthold HK, et al. 5,10-methylenetetrahydrofolate reductase genotype determines the plasma homocysteine-lowering effect of supplementation with 5-methyltetrahydrofolate or folic acid in healthy young women. Am J Clin Nutr. 2002;75(2):275–82.PubMedCrossRef
31.
go back to reference Kalmbach RD, Choumenkovitch SF, Troen AM, D’Agostino R, Jacques PF, Selhub J. Circulating folic acid in plasma: relation to folic acid fortification. Am J Clin Nutr. 2008;88(3):763–8.PubMedPubMedCentralCrossRef Kalmbach RD, Choumenkovitch SF, Troen AM, D’Agostino R, Jacques PF, Selhub J. Circulating folic acid in plasma: relation to folic acid fortification. Am J Clin Nutr. 2008;88(3):763–8.PubMedPubMedCentralCrossRef
32.
go back to reference Lamers Y, Macfarlane AJ, Connor DLO, Fontaine-bisson B. Periconceptional intake of folic acid among low-risk women in Canada: summary of a workshop aiming to align prenatal folic acid supplement composition with current expert guidelines. Am J Clin Nutr. 2018;108:1357–68.PubMedPubMedCentralCrossRef Lamers Y, Macfarlane AJ, Connor DLO, Fontaine-bisson B. Periconceptional intake of folic acid among low-risk women in Canada: summary of a workshop aiming to align prenatal folic acid supplement composition with current expert guidelines. Am J Clin Nutr. 2018;108:1357–68.PubMedPubMedCentralCrossRef
33.
go back to reference Page R, Robichaud A, Arbuckle TE, Fraser WD, MacFarlane AJ. Total folate and unmetabolized folic acid in the breast milk of a cross-section of Canadian women. Am J Clin Nutr. 2017;105(5):1101–9.PubMedCrossRef Page R, Robichaud A, Arbuckle TE, Fraser WD, MacFarlane AJ. Total folate and unmetabolized folic acid in the breast milk of a cross-section of Canadian women. Am J Clin Nutr. 2017;105(5):1101–9.PubMedCrossRef
34.
go back to reference Houghton LA, Yang J, O’Connor DL. Unmetabolized folic acid and total folate concentrations in breast milk are unaffected by low-dose folate supplements. Am J Clin Nutr. 2009;89(1):216–20.PubMedCrossRef Houghton LA, Yang J, O’Connor DL. Unmetabolized folic acid and total folate concentrations in breast milk are unaffected by low-dose folate supplements. Am J Clin Nutr. 2009;89(1):216–20.PubMedCrossRef
35.
go back to reference Verwei M, Arkbåge K, Mocking H, Havenaar R, Groten J. The binding of folic acid and 5-methyltetrahydrofolate to folate-binding proteins during gastric passage differs in a dynamic in vitro gastrointestinal model. J Nutr. 2004;134(1):31–7.PubMedCrossRef Verwei M, Arkbåge K, Mocking H, Havenaar R, Groten J. The binding of folic acid and 5-methyltetrahydrofolate to folate-binding proteins during gastric passage differs in a dynamic in vitro gastrointestinal model. J Nutr. 2004;134(1):31–7.PubMedCrossRef
36.
go back to reference Nygren-Babol L, Jägerstad M. Folate-binding protein in milk: a review of biochemistry, physiology, and analytical methods. Crit Rev Food Sci Nutr. 2012;52(5):410–25.PubMedCrossRef Nygren-Babol L, Jägerstad M. Folate-binding protein in milk: a review of biochemistry, physiology, and analytical methods. Crit Rev Food Sci Nutr. 2012;52(5):410–25.PubMedCrossRef
38.
go back to reference Henderson AM, Aleliunas RE, Loh SP, Khor GL, Harvey-Leeson S, Glier MB, et al. L-5-methyltetrahydrofolate supplementation increases blood folate concentrations to a greater extent than folic acid supplementation in Malaysian women. J Nutr. 2018;148:855–90.CrossRef Henderson AM, Aleliunas RE, Loh SP, Khor GL, Harvey-Leeson S, Glier MB, et al. L-5-methyltetrahydrofolate supplementation increases blood folate concentrations to a greater extent than folic acid supplementation in Malaysian women. J Nutr. 2018;148:855–90.CrossRef
39.
go back to reference Lamers Y, Prinz-langenohl R, Bramswig S, Pietrzik K. Red blood cell folate concentrations increase more after supplementation with [6S]-5-methyltetrahydrofolate than with folic acid in women of childbearing age. Am J Clin Nutr. 2006;84:156–61.PubMedCrossRef Lamers Y, Prinz-langenohl R, Bramswig S, Pietrzik K. Red blood cell folate concentrations increase more after supplementation with [6S]-5-methyltetrahydrofolate than with folic acid in women of childbearing age. Am J Clin Nutr. 2006;84:156–61.PubMedCrossRef
40.
go back to reference Venn BJ, Green T, Moser R, Mann JI. Comparison of low-dose supplementation with L-5-methylterahydrofolate or folic acid on plasma homocysteine: a randomized placebo controlled study. Am J Clin Nutr. 2003;77:658–62.PubMedCrossRef Venn BJ, Green T, Moser R, Mann JI. Comparison of low-dose supplementation with L-5-methylterahydrofolate or folic acid on plasma homocysteine: a randomized placebo controlled study. Am J Clin Nutr. 2003;77:658–62.PubMedCrossRef
41.
go back to reference Lamers Y, Prinz-Langenohl R, Moser R, Pietrzik K. Supplementation with [6S]-5-methyltetrahydrofolate or folic acid equally reduces plasma total homocysteine concentrations in healthy women. Am J Clin Nutr. 2004;79:473–8.PubMedCrossRef Lamers Y, Prinz-Langenohl R, Moser R, Pietrzik K. Supplementation with [6S]-5-methyltetrahydrofolate or folic acid equally reduces plasma total homocysteine concentrations in healthy women. Am J Clin Nutr. 2004;79:473–8.PubMedCrossRef
42.
go back to reference Pietrzik K, Lamers Y, Brämswig S, Prinz-Langenohl R. Calculation of red blood cell folate steady state conditions and elimination kinetics after daily supplementation with various folate forms and doses in women of childbearing age. Am J Clin Nutr. 2007;86:1414–9.PubMedCrossRef Pietrzik K, Lamers Y, Brämswig S, Prinz-Langenohl R. Calculation of red blood cell folate steady state conditions and elimination kinetics after daily supplementation with various folate forms and doses in women of childbearing age. Am J Clin Nutr. 2007;86:1414–9.PubMedCrossRef
43.
go back to reference Chan A, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586.PubMedPubMedCentralCrossRef Chan A, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586.PubMedPubMedCentralCrossRef
45.
go back to reference Clifford AJ, Noceti EM, Block-Joy A, Block T, Block G. Erythrocyte folate and its response to folic acid supplementation is assay dependent in women. J Nutr. 2005;135(1):137–43.PubMedCrossRef Clifford AJ, Noceti EM, Block-Joy A, Block T, Block G. Erythrocyte folate and its response to folic acid supplementation is assay dependent in women. J Nutr. 2005;135(1):137–43.PubMedCrossRef
46.
go back to reference Campbell K, Rowe H, Azzam H, Lane CA. The management of nausea and vomiting of pregnancy. J Obstet Gynaecol Canada. 2016;38(12):1127–37.CrossRef Campbell K, Rowe H, Azzam H, Lane CA. The management of nausea and vomiting of pregnancy. J Obstet Gynaecol Canada. 2016;38(12):1127–37.CrossRef
47.
go back to reference Sutton EF, Cain LE, Vallo PM, Redman LM. Strategies for successful recruitment of pregnant patients into clinical trials. Obstet Gynecol. 2017;129(3):554–9.PubMedPubMedCentralCrossRef Sutton EF, Cain LE, Vallo PM, Redman LM. Strategies for successful recruitment of pregnant patients into clinical trials. Obstet Gynecol. 2017;129(3):554–9.PubMedPubMedCentralCrossRef
48.
go back to reference PHAC. What Mothers Say: The Canadian Maternity Experiences Survey. What Mothers Say: The Canadian Maternity Experiences Survey. 2009. PHAC. What Mothers Say: The Canadian Maternity Experiences Survey. What Mothers Say: The Canadian Maternity Experiences Survey. 2009.
49.
go back to reference Udipi S, Kirksey A, Roepke J. Diurnal variations in folacin levels of human milk: use of a single sample to represent folacin concentration in milk during a 24-h period. Am J Clin Nutr. 1987;45:770–9.PubMedCrossRef Udipi S, Kirksey A, Roepke J. Diurnal variations in folacin levels of human milk: use of a single sample to represent folacin concentration in milk during a 24-h period. Am J Clin Nutr. 1987;45:770–9.PubMedCrossRef
50.
go back to reference Molloy AM, Scott JM. Microbiological assay for serum, plasma, and red cell folate using cryopreserved, microtiter plate method. Methods Enzymol. 1997;281:43–53.PubMedCrossRef Molloy AM, Scott JM. Microbiological assay for serum, plasma, and red cell folate using cryopreserved, microtiter plate method. Methods Enzymol. 1997;281:43–53.PubMedCrossRef
51.
go back to reference Pirkle J. CDC Laboratory Procedure Manual; total folate, serum/whole blood microbiological assay; 2012. Pirkle J. CDC Laboratory Procedure Manual; total folate, serum/whole blood microbiological assay; 2012.
52.
go back to reference Pfeiffer CM, Fazili Z, McCoy L, Zhang M, Gunter EW. Determination of folate vitamers in human serum by stable-isotope-dilution tandem mass spectrometry and comparison with radioassay and microbiologic assay. Clin Chem. 2004;50(2):423–32.PubMedCrossRef Pfeiffer CM, Fazili Z, McCoy L, Zhang M, Gunter EW. Determination of folate vitamers in human serum by stable-isotope-dilution tandem mass spectrometry and comparison with radioassay and microbiologic assay. Clin Chem. 2004;50(2):423–32.PubMedCrossRef
53.
go back to reference Finkelstein JD. The metabolism of homocysteine: pathways and regulation. Eur J Pediatr. 1998;157(S2):252–62.CrossRef Finkelstein JD. The metabolism of homocysteine: pathways and regulation. Eur J Pediatr. 1998;157(S2):252–62.CrossRef
54.
go back to reference Arning E, Bottiglieri T. Quantitation of S-adenosylmethionine and S-adenosylhomocysteine in plasma using liquid chromatography-electrospray tandem mass spectrometry. In: Methods in molecular biology; 2016. p. 255–62. Arning E, Bottiglieri T. Quantitation of S-adenosylmethionine and S-adenosylhomocysteine in plasma using liquid chromatography-electrospray tandem mass spectrometry. In: Methods in molecular biology; 2016. p. 255–62.
55.
go back to reference Ubbink JB, Serfontein WJ, De Villiers LS. Stability of pyridoxal-5-phosphate semicarbazone: applications in plasma vitamin B6 analysis and population surveys of vitamin B6 nutritional status. J Chromatogr B Biomed Sci Appl. 1985;342(C):277–84.CrossRef Ubbink JB, Serfontein WJ, De Villiers LS. Stability of pyridoxal-5-phosphate semicarbazone: applications in plasma vitamin B6 analysis and population surveys of vitamin B6 nutritional status. J Chromatogr B Biomed Sci Appl. 1985;342(C):277–84.CrossRef
56.
go back to reference Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3.PubMedCrossRef Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3.PubMedCrossRef
57.
go back to reference Selhub J, Arnold R, Smith AM, Picciano MF. Milk folate binding protein (FBP): a secretory protein for folate? Nutr Res. 1984;4(2):181–7.CrossRef Selhub J, Arnold R, Smith AM, Picciano MF. Milk folate binding protein (FBP): a secretory protein for folate? Nutr Res. 1984;4(2):181–7.CrossRef
58.
go back to reference Little RJ, Agostino RD, Cohen ML, Dickersin K, Emerson SS, Farrar JT, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(14):1355–60.PubMedPubMedCentralCrossRef Little RJ, Agostino RD, Cohen ML, Dickersin K, Emerson SS, Farrar JT, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(14):1355–60.PubMedPubMedCentralCrossRef
Metadata
Title
Is natural (6S)-5-methyltetrahydrofolic acid as effective as synthetic folic acid in increasing serum and red blood cell folate concentrations during pregnancy? A proof-of-concept pilot study
Authors
Kelsey M. Cochrane
Chantal Mayer
Angela M. Devlin
Rajavel Elango
Jennifer A. Hutcheon
Crystal D. Karakochuk
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Trials / Issue 1/2020
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-020-04320-3

Other articles of this Issue 1/2020

Trials 1/2020 Go to the issue