Skip to main content
Top
Published in: Trials 1/2020

01-12-2020 | Study protocol

Virtual Reality Social Prediction Improvement and Rehabilitation Intensive Training (VR-SPIRIT) for paediatric patients with congenital cerebellar diseases: study protocol of a randomised controlled trial

Authors: Niccolò Butti, Emilia Biffi, Chiara Genova, Romina Romaniello, Davide Felice Redaelli, Gianluigi Reni, Renato Borgatti, Cosimo Urgesi

Published in: Trials | Issue 1/2020

Login to get access

Abstract

Background

Patients with cerebellar malformations exhibit not only movement problems, but also important deficits in social cognition. Thus, rehabilitation approaches should not only involve the recovery of motor function but also of higher-order abilities such as processing of social stimuli. In keeping with the general role of the cerebellum in anticipating and predicting events, we used a VR-based rehabilitation system to implement a social cognition intensive training specifically tailored to improve predictive abilities in social scenarios (VR-Spirit).

Methods/design

The study is an interventional randomised controlled trial that aims to recruit 42 children, adolescents and young adults with congenital cerebellar malformations, randomly allocated to the experimental group or the active control group. The experimental group is administered the VR-Spirit, requiring the participants to compete with different avatars in the reaching of recreational equipment and implicitly prompting them to form expectations about their playing preference. The active control group participates in a VR-training with standard games currently adopted for motor rehabilitation. Both trainings are composed by eight 45-min sessions and are administered in the GRAIL VR laboratory (Motekforce Link, Netherlands), an integrated platform that allows patients to move in natural and attractive VR environments. An evaluation session in VR with the same paradigm used in the VR-Spirit but implemented in a different scenario is administered at the beginning (T0) of the two trainings (T1) and at the end (T2). Moreover, a battery of neurocognitive tests spanning different domains is administered to all participants at T0, T2 and in a follow-up session after 2 months from the end of the two trainings (T3).

Discussion

This study offers a novel approach for rehabilitation based on specific neural mechanisms of the cerebellum. We aim to investigate the feasibility and efficacy of a new, intensive, social cognition training in a sample of Italian patients aged 7–25 years with congenital cerebellar malformations. We expect that VR-Spirit could enhance social prediction ability and indirectly improve cognitive performance in diverse domains. Moreover, through the comparison with a VR-active control training we aim to verify the specificity of VR-Spirit in improving social perception skills.

Trial registration

ISRCTN, ID: ISRCTN 22332873. Retrospectively registered on 12 March 2018.
Appendix
Available only for authorised users
Literature
1.
go back to reference Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Ryousuke T, Putz B, et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403(Jan):192–5.PubMedCrossRef Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Ryousuke T, Putz B, et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403(Jan):192–5.PubMedCrossRef
2.
go back to reference Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2015;14(2):197–220.PubMedCrossRef Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2015;14(2):197–220.PubMedCrossRef
4.
go back to reference Ishikawa T, Tomatsu S, Izawa J, Kakei S. The cerebro-cerebellum: could it be loci of forward models? Neurosci Res; 2016;104:72–9.PubMedCrossRef Ishikawa T, Tomatsu S, Izawa J, Kakei S. The cerebro-cerebellum: could it be loci of forward models? Neurosci Res; 2016;104:72–9.PubMedCrossRef
5.
go back to reference Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedPubMedCentralCrossRef Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedPubMedCentralCrossRef
8.
go back to reference Herzfeld DJ, Shadmehr R. Encoding of sensory prediction errors by the Purkinje cells of the cerebellum. J Neurosci. 2017;38(7573):1–27. Herzfeld DJ, Shadmehr R. Encoding of sensory prediction errors by the Purkinje cells of the cerebellum. J Neurosci. 2017;38(7573):1–27.
9.
go back to reference Balsters JH, Whelan CD, Robertson IH, Ramnani N. Cerebellum and cognition: Evidence for the encoding of higher order rules. Cereb Cortex. 2013;23(6):1433–43.PubMedCrossRef Balsters JH, Whelan CD, Robertson IH, Ramnani N. Cerebellum and cognition: Evidence for the encoding of higher order rules. Cereb Cortex. 2013;23(6):1433–43.PubMedCrossRef
11.
go back to reference Ohmae S, Medina JF. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat Neurosci. 2015;18(12):1798–803.PubMedPubMedCentralCrossRef Ohmae S, Medina JF. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat Neurosci. 2015;18(12):1798–803.PubMedPubMedCentralCrossRef
12.
go back to reference Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.PubMedCrossRef Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.PubMedCrossRef
14.
go back to reference Hoche F, Guell X, Sherman JC, Vangel MG, Schmahmann JD. Cerebellar contribution to social cognition. Cerebellum. 2016;15:732–43CrossRef Hoche F, Guell X, Sherman JC, Vangel MG, Schmahmann JD. Cerebellar contribution to social cognition. Cerebellum. 2016;15:732–43CrossRef
16.
17.
go back to reference Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav Neurol. 2010;23(1–2):17–29.PubMedPubMedCentralCrossRef Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav Neurol. 2010;23(1–2):17–29.PubMedPubMedCentralCrossRef
18.
go back to reference Giocondo F, Curcio G. Spinocerebellar ataxia: a critical review of cognitive and socio-cognitive deficits. Int J Neurosci. 2018;128(2):182–91.PubMedCrossRef Giocondo F, Curcio G. Spinocerebellar ataxia: a critical review of cognitive and socio-cognitive deficits. Int J Neurosci. 2018;128(2):182–91.PubMedCrossRef
19.
go back to reference Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2017. Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2017.
20.
go back to reference Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. Neuroimage. 2016;124(A):248–55.PubMedCrossRef Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. Neuroimage. 2016;124(A):248–55.PubMedCrossRef
21.
go back to reference Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedCrossRef Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedCrossRef
22.
go back to reference Leggio M, Molinari M. Cerebellar sequencing: a trick for predicting the future. Cerebellum. 2015;14:35–8.CrossRef Leggio M, Molinari M. Cerebellar sequencing: a trick for predicting the future. Cerebellum. 2015;14:35–8.CrossRef
23.
go back to reference Sinha P, Kjelgaard MM, Gandhi TK, Tsourides K, Cardinaux AL, Pantazis D, et al. Autism as a disorder of prediction. Proc Natl Acad Sci. 2014;111(42):15220–5.CrossRef Sinha P, Kjelgaard MM, Gandhi TK, Tsourides K, Cardinaux AL, Pantazis D, et al. Autism as a disorder of prediction. Proc Natl Acad Sci. 2014;111(42):15220–5.CrossRef
25.
go back to reference Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMedCrossRef Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMedCrossRef
27.
go back to reference Maeshima S, Osawa A. Stroke rehabilitation in a patient with cerebellar cognitive affective syndrome. Brain Inj. 2007;21(8):877–83.PubMedCrossRef Maeshima S, Osawa A. Stroke rehabilitation in a patient with cerebellar cognitive affective syndrome. Brain Inj. 2007;21(8):877–83.PubMedCrossRef
30.
go back to reference Guruprasad V, Sau K, Vidyasagar S, Varma M. Functional rehabilitation of a patient with post stroke cerebellar cognitive affective syndrome—A single case study. Int J Heal Sci Res Int J Heal Sci Res. 2013;1073(5):107–10. Guruprasad V, Sau K, Vidyasagar S, Varma M. Functional rehabilitation of a patient with post stroke cerebellar cognitive affective syndrome—A single case study. Int J Heal Sci Res Int J Heal Sci Res. 2013;1073(5):107–10.
31.
go back to reference Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedCrossRef Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedCrossRef
33.
go back to reference Freeman D, Reeve S, Robinson A, Ehlers A, Clark D, Spanlang B, et al. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychol Med. 2017;47(14):2393–400.PubMedPubMedCentralCrossRef Freeman D, Reeve S, Robinson A, Ehlers A, Clark D, Spanlang B, et al. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychol Med. 2017;47(14):2393–400.PubMedPubMedCentralCrossRef
34.
go back to reference Riva G, Wiederhold BK, Mantovani F. Neuroscience of virtual reality: from virtual exposure to embodied medicine. Cyberpsychol Behav Soc Netw. 2018;22(1):82–96.CrossRef Riva G, Wiederhold BK, Mantovani F. Neuroscience of virtual reality: from virtual exposure to embodied medicine. Cyberpsychol Behav Soc Netw. 2018;22(1):82–96.CrossRef
35.
go back to reference Kandalaft MR, Didehbani N, Krawczyk DC, Allen TT, Chapman SB. Virtual reality social cognition training for young adults with high-functioning autism. J Autism Dev Disord. 2013;43(1):34–44.PubMedCrossRef Kandalaft MR, Didehbani N, Krawczyk DC, Allen TT, Chapman SB. Virtual reality social cognition training for young adults with high-functioning autism. J Autism Dev Disord. 2013;43(1):34–44.PubMedCrossRef
36.
go back to reference Didehbani N, Allen T, Kandalaft M, Krawczyk D, Chapman S. Virtual reality social cognition training for children with high functioning autism. Comput Human Behav. 2016;62:703–11.CrossRef Didehbani N, Allen T, Kandalaft M, Krawczyk D, Chapman S. Virtual reality social cognition training for children with high functioning autism. Comput Human Behav. 2016;62:703–11.CrossRef
37.
go back to reference Adery LH, Ichinose M, Torregrossa LJ, Wade J, Nichols H, Bekele E, et al. The acceptability and feasibility of a novel virtual reality based social skills training game for schizophrenia: preliminary findings. Psychiatry Res. 2018;270:496–502.PubMedPubMedCentralCrossRef Adery LH, Ichinose M, Torregrossa LJ, Wade J, Nichols H, Bekele E, et al. The acceptability and feasibility of a novel virtual reality based social skills training game for schizophrenia: preliminary findings. Psychiatry Res. 2018;270:496–502.PubMedPubMedCentralCrossRef
38.
go back to reference Larson EB, Feigon M, Gagliardo P, Dvorkin AY. Virtual reality and cognitive rehabilitation: a review of current outcome research. NeuroRehabilitation. 2014;34(4):759–72.PubMedCrossRef Larson EB, Feigon M, Gagliardo P, Dvorkin AY. Virtual reality and cognitive rehabilitation: a review of current outcome research. NeuroRehabilitation. 2014;34(4):759–72.PubMedCrossRef
39.
go back to reference Wright WG, Lebedev M, Rhea CK. Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds. 2014;8(56):1–6. Wright WG, Lebedev M, Rhea CK. Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds. 2014;8(56):1–6.
40.
go back to reference Biffi E, Beretta E, Cesareo A, Maghini C, Turconi AC, Reni G, et al. An immersive virtual reality platform to enhance walking ability of children with acquired brain injuries. Methods Inf Med. 2017;56(2):119–26.PubMedCrossRef Biffi E, Beretta E, Cesareo A, Maghini C, Turconi AC, Reni G, et al. An immersive virtual reality platform to enhance walking ability of children with acquired brain injuries. Methods Inf Med. 2017;56(2):119–26.PubMedCrossRef
41.
go back to reference Gagliardi C, Turconi AC, Biffi E, Maghini C, Marelli A, Cesareo A, et al. Immersive virtual reality to improve walking abilities in cerebral palsy: a pilot study. Ann Biomed Eng. 2018;46(9):1376–84.PubMedCrossRef Gagliardi C, Turconi AC, Biffi E, Maghini C, Marelli A, Cesareo A, et al. Immersive virtual reality to improve walking abilities in cerebral palsy: a pilot study. Ann Biomed Eng. 2018;46(9):1376–84.PubMedCrossRef
42.
go back to reference De Luca R, Portaro S, Le Cause M, De Domenico C, Maggio MG, Cristina Ferrera M, et al. Cognitive rehabilitation using immersive virtual reality at young age: a case report on traumatic brain injury. Appl Neuropsychol Child. 2019;6:1–6. De Luca R, Portaro S, Le Cause M, De Domenico C, Maggio MG, Cristina Ferrera M, et al. Cognitive rehabilitation using immersive virtual reality at young age: a case report on traumatic brain injury. Appl Neuropsychol Child. 2019;6:1–6.
43.
go back to reference De Luca R, Manuli A, De Domenico C, Lo Voi E, Buda A, Maresca G, et al. Improving neuropsychiatric symptoms following stroke using virtual reality: a case report. Medicine (Baltimore). 2019;98(19):e15236.PubMedPubMedCentralCrossRef De Luca R, Manuli A, De Domenico C, Lo Voi E, Buda A, Maresca G, et al. Improving neuropsychiatric symptoms following stroke using virtual reality: a case report. Medicine (Baltimore). 2019;98(19):e15236.PubMedPubMedCentralCrossRef
44.
go back to reference Krysta K, Wilczyński K, Paliga J, Szczȩsna A, Wojciechowska M, Martyniak E, et al. Implementation of the Motek Caren system in behavioural therapy for patients with anxiety disorders. Psychiatria Danub. 2016. Krysta K, Wilczyński K, Paliga J, Szczȩsna A, Wojciechowska M, Martyniak E, et al. Implementation of the Motek Caren system in behavioural therapy for patients with anxiety disorders. Psychiatria Danub. 2016.
47.
go back to reference Kernan WN, Viscoli CM, Makuch RW, Brass LM, Horwitz RI. Stratified randomization for clinical trials. J Clin Epidemiol. 1999;52(1):19–26.PubMedCrossRef Kernan WN, Viscoli CM, Makuch RW, Brass LM, Horwitz RI. Stratified randomization for clinical trials. J Clin Epidemiol. 1999;52(1):19–26.PubMedCrossRef
48.
go back to reference DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington: American Psychiatric Association; 2013. DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington: American Psychiatric Association; 2013.
49.
go back to reference Korkman M, Kirk U, Kemp S. Design and purpose of the NEPSY-II. San Antonio: The NEPSY; 2007. p. 1–18. Korkman M, Kirk U, Kemp S. Design and purpose of the NEPSY-II. San Antonio: The NEPSY; 2007. p. 1–18.
50.
go back to reference Korkman M, Kirk U, Kemp SL. NEPSY-II. Second edition. (Italian edition, C. Urgesi & F. Fabbro [Eds.]). Firenze: Giunti O.S. Organizzazioni Speciali; 2011. Korkman M, Kirk U, Kemp SL. NEPSY-II. Second edition. (Italian edition, C. Urgesi & F. Fabbro [Eds.]). Firenze: Giunti O.S. Organizzazioni Speciali; 2011. 
51.
go back to reference Amoruso L, Finisguerra A, Urgesi C. Tracking the time course of top-down contextual effects on motor responses during action comprehension. J Neurosci. 2016;36(46):11590–600.PubMedPubMedCentralCrossRef Amoruso L, Finisguerra A, Urgesi C. Tracking the time course of top-down contextual effects on motor responses during action comprehension. J Neurosci. 2016;36(46):11590–600.PubMedPubMedCentralCrossRef
52.
go back to reference Vogels T, Verrips GHW, Koopman HM, Theunissen NCM, Fekkes M, Kamphuis RP. TACQOL Manual Parent Form and Child Form. Leiden: Leiden Center for Child Health and Pediatrics LUMC-TNO; 1999. Vogels T, Verrips GHW, Koopman HM, Theunissen NCM, Fekkes M, Kamphuis RP. TACQOL Manual Parent Form and Child Form. Leiden: Leiden Center for Child Health and Pediatrics LUMC-TNO; 1999.
53.
go back to reference Achenbach TM. Child Behavior Checklist. In: Encyclopedia of clinical neuropsychology; 2011. Achenbach TM. Child Behavior Checklist. In: Encyclopedia of clinical neuropsychology; 2011.
54.
go back to reference Frigerio A, Cattaneo C, Cataldo MG, Schiatti A, Molteni M, Battaglia M. Behavioral and emotional problems among Italian children and adolescents aged 4 to 18 years as reported by parents and teachers. Eur J Psychol Assess. 2004;20:124–33.CrossRef Frigerio A, Cattaneo C, Cataldo MG, Schiatti A, Molteni M, Battaglia M. Behavioral and emotional problems among Italian children and adolescents aged 4 to 18 years as reported by parents and teachers. Eur J Psychol Assess. 2004;20:124–33.CrossRef
55.
go back to reference Chan AW, Tetzlaff JM, Altman DG, Dickersin K, Moher D. SPIRIT 2013: New guidance for content of clinical trial protocols. Lancet.2013;381(9861):91–2. Chan AW, Tetzlaff JM, Altman DG, Dickersin K, Moher D. SPIRIT 2013: New guidance for content of clinical trial protocols. Lancet.2013;381(9861):91–2.
56.
go back to reference Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 Statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–7.PubMedPubMedCentralCrossRef Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 Statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–7.PubMedPubMedCentralCrossRef
57.
go back to reference Wechsler D. WISC-IV administration manual. The Wechsler Intelligence Scale for Children—fourth edition; 2003. p. 153–90. Wechsler D. WISC-IV administration manual. The Wechsler Intelligence Scale for Children—fourth edition; 2003. p. 153–90.
58.
go back to reference Dziura JD, Post LA, Zhao Q, Fu Z, Peduzzi P. Strategies for dealing with missing data in clinical trials: from design to analysis. Yale J Biol Med. 2013;86(3):343–58. Dziura JD, Post LA, Zhao Q, Fu Z, Peduzzi P. Strategies for dealing with missing data in clinical trials: from design to analysis. Yale J Biol Med. 2013;86(3):343–58.
60.
go back to reference Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130(10):2646–60.PubMedCrossRef Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130(10):2646–60.PubMedCrossRef
62.
go back to reference Verschure PFMJ. Neuroscience, virtual reality and neurorehabilitation: brain repair as a validation of brain theory. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; 2011. Verschure PFMJ. Neuroscience, virtual reality and neurorehabilitation: brain repair as a validation of brain theory. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; 2011.
63.
go back to reference Cameirão MS, Badia SBI, Oller ED, Verschure PFMJ. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabil. 2010;7:48.PubMedPubMedCentralCrossRef Cameirão MS, Badia SBI, Oller ED, Verschure PFMJ. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabil. 2010;7:48.PubMedPubMedCentralCrossRef
64.
go back to reference Johnston MV. Plasticity in the developing brain: implications for rehabilitation. Dev Disabil Res Rev. 2009. Johnston MV. Plasticity in the developing brain: implications for rehabilitation. Dev Disabil Res Rev. 2009.
65.
go back to reference Ismail FY, Fatemi A, Johnston M V. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol. 2017;21(1):23–48.PubMedCrossRef Ismail FY, Fatemi A, Johnston M V. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol. 2017;21(1):23–48.PubMedCrossRef
67.
go back to reference Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72.PubMedCrossRef Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72.PubMedCrossRef
68.
go back to reference Mishkind MC, Norr AM, Katz AC, Reger GM. Review of virtual reality treatment in psychiatry: evidence versus current diffusion and use. Curr Psychiatry Rep. 2017;19:80. Mishkind MC, Norr AM, Katz AC, Reger GM. Review of virtual reality treatment in psychiatry: evidence versus current diffusion and use. Curr Psychiatry Rep. 2017;19:80.
69.
go back to reference Miller HL, Caçola PM, Sherrod GM, Patterson RM, Bugnariu NL. Children with autism spectrum disorder, developmental coordination disorder, and typical development differ in characteristics of dynamic postural control: a preliminary study. Gait Posture. 2019;67(9-11).CrossRef Miller HL, Caçola PM, Sherrod GM, Patterson RM, Bugnariu NL. Children with autism spectrum disorder, developmental coordination disorder, and typical development differ in characteristics of dynamic postural control: a preliminary study. Gait Posture. 2019;67(9-11).CrossRef
70.
71.
go back to reference Lin Y, Zhu M, Su Z. The pursuit of balance: an overview of covariate-adaptive randomization techniques in clinical trials. Contemp Clin Trials. 2015. Lin Y, Zhu M, Su Z. The pursuit of balance: an overview of covariate-adaptive randomization techniques in clinical trials. Contemp Clin Trials. 2015.
Metadata
Title
Virtual Reality Social Prediction Improvement and Rehabilitation Intensive Training (VR-SPIRIT) for paediatric patients with congenital cerebellar diseases: study protocol of a randomised controlled trial
Authors
Niccolò Butti
Emilia Biffi
Chiara Genova
Romina Romaniello
Davide Felice Redaelli
Gianluigi Reni
Renato Borgatti
Cosimo Urgesi
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Trials / Issue 1/2020
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-019-4001-4

Other articles of this Issue 1/2020

Trials 1/2020 Go to the issue