Skip to main content
Top
Published in: Trials 1/2019

Open Access 01-12-2019 | Hypoxemia | Study protocol

Solar-powered oxygen delivery for the treatment of children with hypoxemia: protocol for a cluster-randomized stepped-wedge controlled trial in Uganda

Authors: Nicholas Conradi, Qaasim Mian, Sophie Namasopo, Andrea L. Conroy, Laura L. Hermann, Charles Olaro, Jackson Amone, Robert O. Opoka, Michael T. Hawkes

Published in: Trials | Issue 1/2019

Login to get access

Abstract

Background

Child mortality due to pneumonia is a major global health problem and is associated with hypoxemia. Access to safe and continuous oxygen therapy can reduce mortality; however, low-income countries may lack the necessary resources for oxygen delivery. We have previously demonstrated proof-of-concept that solar-powered oxygen (SPO2) delivery can reliably provide medical oxygen remote settings with minimal access to electricity. This study aims to demonstrate the efficacy of SPO2 in children hospitalized with acute hypoxemic respiratory illness across Uganda.

Methods

Objectives: Demonstrate efficacy of SPO2 in children hospitalized with acute hypoxemic respiratory illness. Study design: Multi-center, stepped-wedge cluster-randomized trial. Setting: Twenty health facilities across Uganda, a low-income, high-burden country for pediatric pneumonia. Site selection: Facilities with pediatric inpatient services lacking consistent O2 supply on pediatric wards. Participants: Children aged < 5 years hospitalized with hypoxemia (saturation < 92%) warranting hospital admission based on clinical judgement. Randomization methods: Random installation order generated a priori with allocation concealment. Study procedure: Patients receive standard of care within pediatric wards with or without SPO2 system installed. Outcome measures: Primary: 48-h mortality. Secondary: safety, efficacy, SPO2 system functionality, operating costs, nursing knowledge, skills, and retention for oxygen administration. Statistical analysis of primary outcome: Linear mixed effects logistic regression model with 48-h mortality (dependent variable) as a function of SPO2 treatment (before versus after installation), while adjusting for confounding effects of calendar time (fixed effect) and site (random effect). Sample size: 2400 patients across 20 health facilities, predicted to provide 80% power to detect a 35% reduction in mortality after introduction of SPO2, based on a computer simulation of > 5000 trials.

Discussion

Overall, our study aims to demonstrate mortality benefit of SPO2 relative to standard (unreliable) oxygen delivery. The innovative trial design (stepped-wedge, cluster-randomized) is supported by a computer simulation. Capacity building for nursing care and oxygen therapy is a non-scientific objective of the study. If successful, SPO2 could be scaled across a variety of resource-constrained remote or rural settings in sub-Saharan Africa and beyond.

Trial registration

Clinicaltrials.gov, NCT03851783. Registered on 22 February 2019.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bawaskar HS. The world’s forgotten children. Lancet. 2003;361(9364):1224–5.CrossRef Bawaskar HS. The world’s forgotten children. Lancet. 2003;361(9364):1224–5.CrossRef
2.
go back to reference Black RE, Morris SS, Bryce J. Where and why are 10 million children dying every year? Lancet. 2003;361(9376):2226–34.CrossRef Black RE, Morris SS, Bryce J. Where and why are 10 million children dying every year? Lancet. 2003;361(9376):2226–34.CrossRef
3.
go back to reference Nascimento-Carvalho CM. Etiology of childhood community acquired pneumonia and its implications for vaccination. Braz J Infect Dis. 2001;5(2):87–97.CrossRef Nascimento-Carvalho CM. Etiology of childhood community acquired pneumonia and its implications for vaccination. Braz J Infect Dis. 2001;5(2):87–97.CrossRef
5.
go back to reference Coghlan B, Brennan RJ, Ngoy P, Dofara D, Otto B, Clements M, et al. Mortality in the Democratic Republic of Congo: a nationwide survey. Lancet. 2006;367(9504):44–51.CrossRef Coghlan B, Brennan RJ, Ngoy P, Dofara D, Otto B, Clements M, et al. Mortality in the Democratic Republic of Congo: a nationwide survey. Lancet. 2006;367(9504):44–51.CrossRef
6.
go back to reference Nabwire J, Namasopo S, Hawkes M. Oxygen availability and nursing capacity for oxygen therapy in Ugandan paediatric wards. J Trop Pediatr. 2018;64(2):97–103.CrossRef Nabwire J, Namasopo S, Hawkes M. Oxygen availability and nursing capacity for oxygen therapy in Ugandan paediatric wards. J Trop Pediatr. 2018;64(2):97–103.CrossRef
7.
go back to reference Belle J, Cohen H, Shindo N, Lim M, Velazquez-Berumen A, Ndihokubwayo JB, et al. Influenza preparedness in low-resource settings: a look at oxygen delivery in 12 African countries. J Infect Dev Ctries. 2010;4(7):419–24.CrossRef Belle J, Cohen H, Shindo N, Lim M, Velazquez-Berumen A, Ndihokubwayo JB, et al. Influenza preparedness in low-resource settings: a look at oxygen delivery in 12 African countries. J Infect Dev Ctries. 2010;4(7):419–24.CrossRef
8.
go back to reference Bradley B, Light J, Ebonyi A, N’Jai P, Idea R, Ebruke B, et al. Implementation and 8-year follow-up of an uninterrupted oxygen supply system in a hospital in The Gambia. Int J Tuberc Lung Dis. 2016;20(8):1130–4.CrossRef Bradley B, Light J, Ebonyi A, N’Jai P, Idea R, Ebruke B, et al. Implementation and 8-year follow-up of an uninterrupted oxygen supply system in a hospital in The Gambia. Int J Tuberc Lung Dis. 2016;20(8):1130–4.CrossRef
9.
go back to reference Hill SE, Njie O, Sanneh M, Jallow M, Peel D, Njie M, et al. Oxygen for treatment of severe pneumonia in The Gambia, West Africa: a situational analysis. Int J Tuberc Lung Dis. 2009;13(5):587–93.PubMed Hill SE, Njie O, Sanneh M, Jallow M, Peel D, Njie M, et al. Oxygen for treatment of severe pneumonia in The Gambia, West Africa: a situational analysis. Int J Tuberc Lung Dis. 2009;13(5):587–93.PubMed
10.
go back to reference Howie SR, Hill S, Ebonyi A, Krishnan G, Njie O, Sanneh M, et al. Meeting oxygen needs in Africa: an options analysis from the Gambia. Bull World Health Organ. 2009;87(10):763–71.CrossRef Howie SR, Hill S, Ebonyi A, Krishnan G, Njie O, Sanneh M, et al. Meeting oxygen needs in Africa: an options analysis from the Gambia. Bull World Health Organ. 2009;87(10):763–71.CrossRef
11.
go back to reference Maitland K, Kiguli S, Opoka RO, Olupot-Olupot P, Engoru C, Njuguna P, et al. Children’s Oxygen Administration Strategies Trial (COAST): a randomised controlled trial of high flow versus oxygen versus control in African children with severe pneumonia. Wellcome Open Res. 2017;2:100.CrossRef Maitland K, Kiguli S, Opoka RO, Olupot-Olupot P, Engoru C, Njuguna P, et al. Children’s Oxygen Administration Strategies Trial (COAST): a randomised controlled trial of high flow versus oxygen versus control in African children with severe pneumonia. Wellcome Open Res. 2017;2:100.CrossRef
12.
go back to reference Adair-Rohani H, Zukor K, Bonjour S, Wilburn S, Kuesel AC, Hebert R, et al. Limited electricity access in health facilities of sub-Saharan Africa: a systematic review of data on electricity access, sources, and reliability. Glob Health Sci Pract. 2013;1(2):249–61.CrossRef Adair-Rohani H, Zukor K, Bonjour S, Wilburn S, Kuesel AC, Hebert R, et al. Limited electricity access in health facilities of sub-Saharan Africa: a systematic review of data on electricity access, sources, and reliability. Glob Health Sci Pract. 2013;1(2):249–61.CrossRef
13.
go back to reference Duke T, Wandi F, Jonathan M, Matai S, Kaupa M, Saavu M, et al. Improved oxygen systems for childhood pneumonia: a multihospital effectiveness study in Papua New Guinea. Lancet. 2008;372(9646):1328–33.CrossRef Duke T, Wandi F, Jonathan M, Matai S, Kaupa M, Saavu M, et al. Improved oxygen systems for childhood pneumonia: a multihospital effectiveness study in Papua New Guinea. Lancet. 2008;372(9646):1328–33.CrossRef
14.
go back to reference Turnbull H, Conroy A, Opoka R, Namasopo S, Kain K, Hawkes M. Solar-powered oxygen delivery: proof of concept. Int J Tuberc Lung Dis. 2016;20(5):696–703.CrossRef Turnbull H, Conroy A, Opoka R, Namasopo S, Kain K, Hawkes M. Solar-powered oxygen delivery: proof of concept. Int J Tuberc Lung Dis. 2016;20(5):696–703.CrossRef
15.
go back to reference Hawkes MT, Conroy AL, Namasopo S, Bhargava R, Kain KC, Mian Q, et al. Solar-powered oxygen delivery in low-resource settings: a randomized clinical noninferiority trial. JAMA Pediatr. 2018;172(7):694–6.CrossRef Hawkes MT, Conroy AL, Namasopo S, Bhargava R, Kain KC, Mian Q, et al. Solar-powered oxygen delivery in low-resource settings: a randomized clinical noninferiority trial. JAMA Pediatr. 2018;172(7):694–6.CrossRef
17.
go back to reference Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007;28(2):182–91.CrossRef Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007;28(2):182–91.CrossRef
18.
go back to reference Ministry of Health of Uganda. Demographic and health information system. Kampala: MoH; 2015. Ministry of Health of Uganda. Demographic and health information system. Kampala: MoH; 2015.
20.
go back to reference Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.CrossRef Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.CrossRef
21.
go back to reference Hooper R, Teerenstra S, de Hoop E, Eldridge S. Sample size calculation for stepped wedge and other longitudinal cluster randomised trials. Stat Med. 2016;35(26):4718–28.CrossRef Hooper R, Teerenstra S, de Hoop E, Eldridge S. Sample size calculation for stepped wedge and other longitudinal cluster randomised trials. Stat Med. 2016;35(26):4718–28.CrossRef
22.
go back to reference Subhi R, Adamson M, Campbell H, Weber M, Smith K, Duke T, Group HiDCS. The prevalence of hypoxaemia among ill children in developing countries: a systematic review. Lancet Infect Dis. 2009;9(4):219–27.CrossRef Subhi R, Adamson M, Campbell H, Weber M, Smith K, Duke T, Group HiDCS. The prevalence of hypoxaemia among ill children in developing countries: a systematic review. Lancet Infect Dis. 2009;9(4):219–27.CrossRef
23.
go back to reference Barra M, Lindstrom JC, Adams SS, Augestad LA. Seasonally adjusted birth frequencies follow the poisson distribution. Tidsskr Nor Laegeforen. 2015;135(23–24):2154–8.CrossRef Barra M, Lindstrom JC, Adams SS, Augestad LA. Seasonally adjusted birth frequencies follow the poisson distribution. Tidsskr Nor Laegeforen. 2015;135(23–24):2154–8.CrossRef
24.
go back to reference Hemming K, Haines TP, Chilton PJ, Girling AJ, Lilford RJ. The stepped wedge cluster randomised trial: rationale, design, analysis, and reporting. BMJ. 2015;350:h391.CrossRef Hemming K, Haines TP, Chilton PJ, Girling AJ, Lilford RJ. The stepped wedge cluster randomised trial: rationale, design, analysis, and reporting. BMJ. 2015;350:h391.CrossRef
25.
go back to reference Kaplan W, Wirtz VJ, Mantel-Teeuwisse A, Stolk P, Duthey B, Laing R. Priority medicines for Europe and the world 2013 update. Geneva: WHO; 2013. Kaplan W, Wirtz VJ, Mantel-Teeuwisse A, Stolk P, Duthey B, Laing R. Priority medicines for Europe and the world 2013 update. Geneva: WHO; 2013.
26.
go back to reference McAllister DA, Liu L, Shi T, et al. Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: a systematic analysis. The Lancet Global Health. 2019;7(1):e47–57.CrossRef McAllister DA, Liu L, Shi T, et al. Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: a systematic analysis. The Lancet Global Health. 2019;7(1):e47–57.CrossRef
27.
go back to reference Wardlaw T, You D, Newby H, Anthony D, Chopra M. Child survival: a message of hope but a call for renewed commitment in UNICEF report. Reprod Health. 2013;10:64.CrossRef Wardlaw T, You D, Newby H, Anthony D, Chopra M. Child survival: a message of hope but a call for renewed commitment in UNICEF report. Reprod Health. 2013;10:64.CrossRef
28.
go back to reference WHO. WHO model list of essential medicines for children. 6th ed. Geneva: WHO; 2017. WHO. WHO model list of essential medicines for children. 6th ed. Geneva: WHO; 2017.
31.
go back to reference Duke T, Hwaihwanje I, Kaupa M, Karubi J, Panauwe D, Sa'avu M, et al. Solar powered oxygen systems in remote health centers in Papua New Guinea: a large scale implementation effectiveness trial. J Glob Health. 2017;7(1):010411.CrossRef Duke T, Hwaihwanje I, Kaupa M, Karubi J, Panauwe D, Sa'avu M, et al. Solar powered oxygen systems in remote health centers in Papua New Guinea: a large scale implementation effectiveness trial. J Glob Health. 2017;7(1):010411.CrossRef
32.
go back to reference Nyende S, Conroy A, Opoka RO, Namasopo S, Kain KC, Mpimbaza A, et al. Solar-powered oxygen delivery: study protocol for a randomized controlled trial. Trials. 2015;16(1):297.CrossRef Nyende S, Conroy A, Opoka RO, Namasopo S, Kain KC, Mpimbaza A, et al. Solar-powered oxygen delivery: study protocol for a randomized controlled trial. Trials. 2015;16(1):297.CrossRef
33.
go back to reference Eichner FA, Groenwold RHH, Grobbee DE, Oude Rengerink K. Systematic review showed that stepped-wedge cluster randomized trials often did not reach their planned sample size. J Clin Epidemiol. 2019;107:89–100.CrossRef Eichner FA, Groenwold RHH, Grobbee DE, Oude Rengerink K. Systematic review showed that stepped-wedge cluster randomized trials often did not reach their planned sample size. J Clin Epidemiol. 2019;107:89–100.CrossRef
34.
go back to reference Spiegelman D. Evaluating Public Health Interventions: 2. Stepping Up to Routine Public Health Evaluation With the Stepped Wedge Design. Am J Public Health. 2016;106(3):453–7.CrossRef Spiegelman D. Evaluating Public Health Interventions: 2. Stepping Up to Routine Public Health Evaluation With the Stepped Wedge Design. Am J Public Health. 2016;106(3):453–7.CrossRef
35.
go back to reference Arnold BF, Hogan DR, Colford JM Jr, Hubbard AE. Simulation methods to estimate design power: an overview for applied research. BMC Med Res Methodol. 2011;11:94.CrossRef Arnold BF, Hogan DR, Colford JM Jr, Hubbard AE. Simulation methods to estimate design power: an overview for applied research. BMC Med Res Methodol. 2011;11:94.CrossRef
36.
go back to reference Baio G, Copas A, Ambler G, Hargreaves J, Beard E, Omar RZ. Sample size calculation for a stepped wedge trial. Trials. 2015;16:354.CrossRef Baio G, Copas A, Ambler G, Hargreaves J, Beard E, Omar RZ. Sample size calculation for a stepped wedge trial. Trials. 2015;16:354.CrossRef
37.
go back to reference Davies G, Gibson AM, Swanney M, Murray D, Beckert L. Understanding of pulse oximetry among hospital staff. N Z Med J. 2003;116(1168):U297.PubMed Davies G, Gibson AM, Swanney M, Murray D, Beckert L. Understanding of pulse oximetry among hospital staff. N Z Med J. 2003;116(1168):U297.PubMed
38.
go back to reference Graham HR, Bakare AA, Gray A, Ayede AI, Qazi S, McPake B, et al. Adoption of paediatric and neonatal pulse oximetry by 12 hospitals in Nigeria: a mixed-methods realist evaluation. BMJ Glob Health. 2018;3(3):e000812.CrossRef Graham HR, Bakare AA, Gray A, Ayede AI, Qazi S, McPake B, et al. Adoption of paediatric and neonatal pulse oximetry by 12 hospitals in Nigeria: a mixed-methods realist evaluation. BMJ Glob Health. 2018;3(3):e000812.CrossRef
39.
go back to reference Kotz D, Spigt M, Arts IC, Crutzen R, Viechtbauer W. Use of the stepped wedge design cannot be recommended: a critical appraisal and comparison with the classic cluster randomized controlled trial design. J Clin Epidemiol. 2012;65(12):1249–52.CrossRef Kotz D, Spigt M, Arts IC, Crutzen R, Viechtbauer W. Use of the stepped wedge design cannot be recommended: a critical appraisal and comparison with the classic cluster randomized controlled trial design. J Clin Epidemiol. 2012;65(12):1249–52.CrossRef
40.
go back to reference McAllister DA, Liu L, Shi T, Chu Y, Reed C, Burrows J, et al. Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: a systematic analysis. Lancet. 2019;7:e47–57.PubMed McAllister DA, Liu L, Shi T, Chu Y, Reed C, Burrows J, et al. Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: a systematic analysis. Lancet. 2019;7:e47–57.PubMed
Metadata
Title
Solar-powered oxygen delivery for the treatment of children with hypoxemia: protocol for a cluster-randomized stepped-wedge controlled trial in Uganda
Authors
Nicholas Conradi
Qaasim Mian
Sophie Namasopo
Andrea L. Conroy
Laura L. Hermann
Charles Olaro
Jackson Amone
Robert O. Opoka
Michael T. Hawkes
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Trials / Issue 1/2019
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-019-3752-2

Other articles of this Issue 1/2019

Trials 1/2019 Go to the issue