Skip to main content
Top
Published in: Trials 1/2019

Open Access 01-12-2019 | Study protocol

Influence of upper-body continuous, resistance or high-intensity interval training (CRIT) on postprandial responses in persons with spinal cord injury: study protocol for a randomised controlled trial

Authors: David W. McMillan, Jennifer L. Maher, Kevin A. Jacobs, Armando J. Mendez, Mark S. Nash, James L. J. Bilzon

Published in: Trials | Issue 1/2019

Login to get access

Abstract

Background

Chronic spinal cord injury (SCI) increases morbidity and mortality associated with cardiometabolic diseases, secondary to increases in central adiposity, hyperlipidaemia and impaired glucose tolerance. While upper-body Moderate Intensity Continuous Training (MICT) improves cardiorespiratory fitness, its effects on cardiometabolic component risks in adults with SCI appear relatively modest. The aim of this study is to assess the acute effects of Continuous Resistance Training (CRT), High Intensity Interval Training (HIIT), MICT and rest (CON) on fasting and postprandial systemic biomarkers and substrate utilisation.

Methods

Eleven healthy, chronic SCI (> 1 year, ASIA A-C) men will be recruited. Following preliminary testing, each will complete four experimental conditions, where they will report to the laboratory following an ~ 10-h overnight fast. A venous blood sample will be drawn and expired gases collected to estimate resting metabolic rate (RMR). In order to ensure an isocaloric exercise challenge, each will complete CRT first, with the remaining three conditions presented in randomised order: (1) CRT, ~ 45 min of resistance manoeuvres (weight lifting) interspersed with low-resistance, high-speed arm-crank exercise; (2) CON, seated rest; (3) MICT, ~ 45 min constant arm-crank exercise at a resistance equivalent to 30–40% peak power output (PPO) and; (4) HIIT, ~ 35 min arm-crank exercise with the resistance alternating every 2 min between 10% PPO and 70% PPO. After each ~ 45-min condition, participants will ingest a 2510-kJ liquid test meal (35% fat, 50% carbohydrate, 15% protein). Venous blood and expired gas samples will be collected at the end of exercise and at regular intervals for 120 min post meal.

Discussion

This study should establish the acute effects of different forms of exercise on fasting and postprandial responses in chronic SCI male patients. Measures of glucose clearance, insulin sensitivity, lipid and inflammatory biomarker concentrations will be assessed and changes in whole-body substrate oxidation estimated from expired gases.

Trial registration

ClinicalTrials.gov, ID: NCT03545867. Retrospectively registered on 1 June 2018. 
Appendix
Available only for authorised users
Literature
1.
go back to reference Garshick E, Kelley A, Cohen SA, Garrison A, Tun CG, Gagnon D, Brown R. A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord. 2005;43(7):408–16.PubMedPubMedCentralCrossRef Garshick E, Kelley A, Cohen SA, Garrison A, Tun CG, Gagnon D, Brown R. A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord. 2005;43(7):408–16.PubMedPubMedCentralCrossRef
2.
go back to reference Lai YJ, Lin CL, Chang YJ, Lin MC, Lee ST, Sung FC, Lee WY, Kao CH. Spinal cord injury increases the risk of type 2 diabetes: a population-based cohort study. Spine J. 2014;14(9):1957–64.PubMedCrossRef Lai YJ, Lin CL, Chang YJ, Lin MC, Lee ST, Sung FC, Lee WY, Kao CH. Spinal cord injury increases the risk of type 2 diabetes: a population-based cohort study. Spine J. 2014;14(9):1957–64.PubMedCrossRef
3.
go back to reference Edwards LA, Bugaresti JM, Buchholz AC. Visceral adipose tissue and the ratio of visceral to subcutaneous adipose tissue are greater in adults with than in those without spinal cord injury, despite matching waist circumferences. Am J Clin Nutr. 2008;87(3):600–7.PubMedCrossRef Edwards LA, Bugaresti JM, Buchholz AC. Visceral adipose tissue and the ratio of visceral to subcutaneous adipose tissue are greater in adults with than in those without spinal cord injury, despite matching waist circumferences. Am J Clin Nutr. 2008;87(3):600–7.PubMedCrossRef
4.
go back to reference Gilbert O, Croffoot JR, Taylor AJ, Nash M, Schomer K, Groah S. Serum lipid concentrations among persons with spinal cord injury—a systematic review and meta-analysis of the literature. Atherosclerosis. 2014;232(2):305–12.PubMedCrossRef Gilbert O, Croffoot JR, Taylor AJ, Nash M, Schomer K, Groah S. Serum lipid concentrations among persons with spinal cord injury—a systematic review and meta-analysis of the literature. Atherosclerosis. 2014;232(2):305–12.PubMedCrossRef
5.
go back to reference Bauman WA, Spungen AM. Coronary heart disease in individuals with spinal cord injury: assessment of risk factors. Spinal Cord. 2008;46(7):466–76.PubMedCrossRef Bauman WA, Spungen AM. Coronary heart disease in individuals with spinal cord injury: assessment of risk factors. Spinal Cord. 2008;46(7):466–76.PubMedCrossRef
6.
go back to reference Liou TH, Pi-Sunyer FX, Laferrere B. Physical disability and obesity. Nutr Rev. 2005;63(10):321–31.PubMedCrossRef Liou TH, Pi-Sunyer FX, Laferrere B. Physical disability and obesity. Nutr Rev. 2005;63(10):321–31.PubMedCrossRef
7.
go back to reference Rimmer JH, Schiller W, Chen MD. Effects of disability associated low energy expenditure deconditioning syndrome. Exerc Sport Sci Rev. 2012;40(1):22–9.PubMedCrossRef Rimmer JH, Schiller W, Chen MD. Effects of disability associated low energy expenditure deconditioning syndrome. Exerc Sport Sci Rev. 2012;40(1):22–9.PubMedCrossRef
8.
go back to reference Maher JL, McMillan DW, Nash MS. Exercise and health-related risks of physical deconditioning after spinal cord injury. Top Spinal Cord Inj Rehabil. 2017;23(3):175–87.PubMedPubMedCentralCrossRef Maher JL, McMillan DW, Nash MS. Exercise and health-related risks of physical deconditioning after spinal cord injury. Top Spinal Cord Inj Rehabil. 2017;23(3):175–87.PubMedPubMedCentralCrossRef
9.
go back to reference Totosy de Zepetnek JO, Pelletier CA, Hicks AL, MacDonald MJ. Following the physical activity guidelines for adults with spinal cord injury for 16 weeks does not improve vascular health: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(9):1566–75.PubMedCrossRef Totosy de Zepetnek JO, Pelletier CA, Hicks AL, MacDonald MJ. Following the physical activity guidelines for adults with spinal cord injury for 16 weeks does not improve vascular health: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(9):1566–75.PubMedCrossRef
10.
go back to reference Nightingale TE, Walhin JP, Thompson D, Bilzon JLJ. A randomised control trial to determine the influence of a 6-week upper body exercise intervention on markers of cardiometabolic health in spinal cord injured paraplegics. Med Sci Sports Exerc. 2017;49(12):2469–77.PubMedPubMedCentralCrossRef Nightingale TE, Walhin JP, Thompson D, Bilzon JLJ. A randomised control trial to determine the influence of a 6-week upper body exercise intervention on markers of cardiometabolic health in spinal cord injured paraplegics. Med Sci Sports Exerc. 2017;49(12):2469–77.PubMedPubMedCentralCrossRef
11.
go back to reference Nightingale TE, Metcalfe RS, Vollaard NB, Bilzon JLJ. Exercise guidelines to promote cardiometabolic health in spinal cord injured humans: time to raise the intensity? Arch Phys Med Rehabil. 2017;98(8):1693–704.PubMedCrossRef Nightingale TE, Metcalfe RS, Vollaard NB, Bilzon JLJ. Exercise guidelines to promote cardiometabolic health in spinal cord injured humans: time to raise the intensity? Arch Phys Med Rehabil. 2017;98(8):1693–704.PubMedCrossRef
12.
go back to reference Kjaer M, Dela F, Sorensen FB, Secher NH, Bangsbo J, Mohr T, Galbo H. Fatty acid kinetics and carbohydrate metabolism during electrical exercise in spinal cord-injured humans. Am J Physiol Regul Integr Comp Physiol. 2001;281(5):R1492–8.PubMedCrossRef Kjaer M, Dela F, Sorensen FB, Secher NH, Bangsbo J, Mohr T, Galbo H. Fatty acid kinetics and carbohydrate metabolism during electrical exercise in spinal cord-injured humans. Am J Physiol Regul Integr Comp Physiol. 2001;281(5):R1492–8.PubMedCrossRef
13.
go back to reference Astorino TA, Harness ET. Substrate metabolism during exercise in the spinal cord injured. Eur J Appl Physiol. 2009;106(2):187–93.PubMedCrossRef Astorino TA, Harness ET. Substrate metabolism during exercise in the spinal cord injured. Eur J Appl Physiol. 2009;106(2):187–93.PubMedCrossRef
14.
go back to reference Jacobs KA, Burns P, Kressler J, Nash MS. Heavy reliance on carbohydrate across a wide range of exercise intensities during voluntary arm ergometry in persons with paraplegia. J Spinal Cord Med. 2013;36(5):427–35.PubMedPubMedCentralCrossRef Jacobs KA, Burns P, Kressler J, Nash MS. Heavy reliance on carbohydrate across a wide range of exercise intensities during voluntary arm ergometry in persons with paraplegia. J Spinal Cord Med. 2013;36(5):427–35.PubMedPubMedCentralCrossRef
15.
go back to reference Kressler J, Jacobs K, Burns P, Betancourt L, Nash MS. Effects of circuit resistance training and timely protein supplementation on exercise-induced fat oxidation in tetraplegic adults. Top Spinal Cord Inj Rehabil. 2014;20(2):113–22.PubMedPubMedCentralCrossRef Kressler J, Jacobs K, Burns P, Betancourt L, Nash MS. Effects of circuit resistance training and timely protein supplementation on exercise-induced fat oxidation in tetraplegic adults. Top Spinal Cord Inj Rehabil. 2014;20(2):113–22.PubMedPubMedCentralCrossRef
16.
go back to reference Kressler J, Nash MS, Burns PA, Field-Fote EC. Metabolic responses to 4 different body weight-supported locomotor training approaches in persons with incomplete spinal cord injury. Arch Phys Med Rehabil. 2013;94(8):1436–42.PubMedCrossRef Kressler J, Nash MS, Burns PA, Field-Fote EC. Metabolic responses to 4 different body weight-supported locomotor training approaches in persons with incomplete spinal cord injury. Arch Phys Med Rehabil. 2013;94(8):1436–42.PubMedCrossRef
17.
go back to reference Borsheim E, Bahr R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med. 2003;33(14):1037–60.PubMedCrossRef Borsheim E, Bahr R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med. 2003;33(14):1037–60.PubMedCrossRef
18.
go back to reference Lyons S, Richardson M, Bishop P, Smith J, Heath H, Giesen J. Excess post-exercise oxygen consumption in untrained males: effects of intermittent durations of arm ergometry. Appl Physiol Nutr Metab. 2006;31(3):196–201.PubMedCrossRef Lyons S, Richardson M, Bishop P, Smith J, Heath H, Giesen J. Excess post-exercise oxygen consumption in untrained males: effects of intermittent durations of arm ergometry. Appl Physiol Nutr Metab. 2006;31(3):196–201.PubMedCrossRef
19.
go back to reference Lyons S, Richardson M, Bishop P, Smith J, Heath H, Giesen J. Excess post-exercise oxygen consumption in untrained men following exercise of equal energy expenditure: comparisons of upper and lower body exercise. Diabetes Obes Metab. 2007;9(6):889–94.PubMedCrossRef Lyons S, Richardson M, Bishop P, Smith J, Heath H, Giesen J. Excess post-exercise oxygen consumption in untrained men following exercise of equal energy expenditure: comparisons of upper and lower body exercise. Diabetes Obes Metab. 2007;9(6):889–94.PubMedCrossRef
20.
go back to reference Short KR, Sedlock DA. Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol. 1997;83(1):153–9.PubMedCrossRef Short KR, Sedlock DA. Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol. 1997;83(1):153–9.PubMedCrossRef
21.
go back to reference Sedlock DA, Schneider DA, Gass E, Gass G. Excess post-exercise oxygen consumption in spinal cord-injured men. Eur J Appl Physiol. 2004;93(1–2):231–6.PubMedCrossRef Sedlock DA, Schneider DA, Gass E, Gass G. Excess post-exercise oxygen consumption in spinal cord-injured men. Eur J Appl Physiol. 2004;93(1–2):231–6.PubMedCrossRef
22.
go back to reference Kearney ML, Thyfault JP. Exercise and postprandial glycemic control in type 2 diabetes. Curr Diabetes Rev. 2016;12(3):199–210.PubMedCrossRef Kearney ML, Thyfault JP. Exercise and postprandial glycemic control in type 2 diabetes. Curr Diabetes Rev. 2016;12(3):199–210.PubMedCrossRef
23.
go back to reference Kuo CC, Fattor JA, Henderson GC, Brooks GA. Lipid oxidation in fit young adults during postexercise recovery. J Appl Physiol. 2005;99(1):349–56.PubMedCrossRef Kuo CC, Fattor JA, Henderson GC, Brooks GA. Lipid oxidation in fit young adults during postexercise recovery. J Appl Physiol. 2005;99(1):349–56.PubMedCrossRef
24.
go back to reference Davitt PM, Arent SM, Tuazon MA, Golem DL, Henderson GC. Postprandial triglyceride and free fatty acid metabolism in obese women after either endurance or resistance exercise. J Appl Physiol. 2013;114(12):1743–54.PubMedCrossRef Davitt PM, Arent SM, Tuazon MA, Golem DL, Henderson GC. Postprandial triglyceride and free fatty acid metabolism in obese women after either endurance or resistance exercise. J Appl Physiol. 2013;114(12):1743–54.PubMedCrossRef
25.
go back to reference Henderson GC, Alderman BL. Determinants of resting lipid oxidation in response to a prior bout of endurance exercise. J Appl Physiol. 2014;116(1):95–103.PubMedCrossRef Henderson GC, Alderman BL. Determinants of resting lipid oxidation in response to a prior bout of endurance exercise. J Appl Physiol. 2014;116(1):95–103.PubMedCrossRef
26.
go back to reference Lem A, McMillan DW, Nash MS. Energy expenditure during and after a single bout of circuit resistance exercise in persons with tetraplegia. Med Sci Sport Exerc. 2016;48(5S):1025.CrossRef Lem A, McMillan DW, Nash MS. Energy expenditure during and after a single bout of circuit resistance exercise in persons with tetraplegia. Med Sci Sport Exerc. 2016;48(5S):1025.CrossRef
27.
go back to reference Elder CP, Apple DF, Bickel CS, Meyer RA, Dudley GA. Intramuscular fat and glucose tolerance after spinal cord injury—a cross-sectional study. Spinal Cord. 2004;42(12):711–6.PubMedCrossRef Elder CP, Apple DF, Bickel CS, Meyer RA, Dudley GA. Intramuscular fat and glucose tolerance after spinal cord injury—a cross-sectional study. Spinal Cord. 2004;42(12):711–6.PubMedCrossRef
28.
go back to reference Lopez-Miranda J, Perez-Martinez P, Marin C, Moreno JA, Gomez P, Perez-Jimenez F. Postprandial lipoprotein metabolism, genes and risk of cardiovascular disease. Curr Opin Lipidol. 2006;17(2):132–8.PubMedCrossRef Lopez-Miranda J, Perez-Martinez P, Marin C, Moreno JA, Gomez P, Perez-Jimenez F. Postprandial lipoprotein metabolism, genes and risk of cardiovascular disease. Curr Opin Lipidol. 2006;17(2):132–8.PubMedCrossRef
29.
go back to reference Pastromas S, Terzi AB, Tousoulis D, Koulouris S. Postprandial lipemia: an under-recognized atherogenic factor in patients with diabetes mellitus. Int J Cardiol. 2008;126(1):3–12.PubMedCrossRef Pastromas S, Terzi AB, Tousoulis D, Koulouris S. Postprandial lipemia: an under-recognized atherogenic factor in patients with diabetes mellitus. Int J Cardiol. 2008;126(1):3–12.PubMedCrossRef
30.
go back to reference Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol. 2002;8(1):1.CrossRef Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol. 2002;8(1):1.CrossRef
31.
go back to reference Pillard F, Van Wymelbeke V, Garrigue E, Moro C, Crampes F, Guilland JC, Berlan M, de Glisezinski I, Harant I, Rivière D, Brondel L. Lipid oxidation in overweight men after exercise and food intake. Metabolism. 2010;59(2):267–74.PubMedCrossRef Pillard F, Van Wymelbeke V, Garrigue E, Moro C, Crampes F, Guilland JC, Berlan M, de Glisezinski I, Harant I, Rivière D, Brondel L. Lipid oxidation in overweight men after exercise and food intake. Metabolism. 2010;59(2):267–74.PubMedCrossRef
32.
go back to reference Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, Hróbjartsson A, Mann H, Dickersin K, Berlin J, Doré C, Parulekar W, Summerskill W, Groves T, Schulz K, Sox H, Rockhold FW, Rennie D, Moher D. SPIRIT 2013 Statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–7.PubMedPubMedCentralCrossRef Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, Hróbjartsson A, Mann H, Dickersin K, Berlin J, Doré C, Parulekar W, Summerskill W, Groves T, Schulz K, Sox H, Rockhold FW, Rennie D, Moher D. SPIRIT 2013 Statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–7.PubMedPubMedCentralCrossRef
33.
go back to reference Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin J, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleža-Jerić K, Laupacis A, Moher D. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586.PubMedPubMedCentralCrossRef Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin J, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleža-Jerić K, Laupacis A, Moher D. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586.PubMedPubMedCentralCrossRef
34.
go back to reference Nary DE, Froehlich-Grobe K, Aaronson L. Recruitment issues in a randomized controlled exercise trial targeting wheelchair users. Contemp Clin Trials. 2011;32(2):188–95.PubMedCrossRef Nary DE, Froehlich-Grobe K, Aaronson L. Recruitment issues in a randomized controlled exercise trial targeting wheelchair users. Contemp Clin Trials. 2011;32(2):188–95.PubMedCrossRef
35.
go back to reference Ross S, Grant A, Counsell C, Gillespie W, Russell I, Prescott R. Barriers to participation in randomised controlled trials: a systematic review. J Clin Epidemiol. 1999;52(12):1143–56.PubMedCrossRef Ross S, Grant A, Counsell C, Gillespie W, Russell I, Prescott R. Barriers to participation in randomised controlled trials: a systematic review. J Clin Epidemiol. 1999;52(12):1143–56.PubMedCrossRef
36.
go back to reference Kosma M, Cardinal BJ, McCubbin JA. Recruitment techniques among understudied populations and their implications for physical activity promotion. Quest. 2004;56(4):413–20.CrossRef Kosma M, Cardinal BJ, McCubbin JA. Recruitment techniques among understudied populations and their implications for physical activity promotion. Quest. 2004;56(4):413–20.CrossRef
37.
go back to reference Yilmaz DDCB. Recruitment of spinal cord injury patients to clinical trials: challenges and solutions. Top Spinal Cord Inj Rehabil. 2006;11(3):12–23.CrossRef Yilmaz DDCB. Recruitment of spinal cord injury patients to clinical trials: challenges and solutions. Top Spinal Cord Inj Rehabil. 2006;11(3):12–23.CrossRef
38.
go back to reference Bell KR, Hammond F, Hart T, Bickett AK, Temkin NR, Dikmen S. Participant recruitment and retention in rehabilitation research. Am J Phys Med Rehabil. 2008;87(4):330–8.PubMedCrossRef Bell KR, Hammond F, Hart T, Bickett AK, Temkin NR, Dikmen S. Participant recruitment and retention in rehabilitation research. Am J Phys Med Rehabil. 2008;87(4):330–8.PubMedCrossRef
39.
go back to reference Schulz KF, Grimes DA. Unequal group sizes in randomised trials: guarding against guessing. Lancet. 2002;359:966–70.PubMedCrossRef Schulz KF, Grimes DA. Unequal group sizes in randomised trials: guarding against guessing. Lancet. 2002;359:966–70.PubMedCrossRef
40.
go back to reference Schulz KF, Grimes DA. Allocation concealment in randomised trials: defending against deciphering. Lancet. 2002;359:614–8.PubMedCrossRef Schulz KF, Grimes DA. Allocation concealment in randomised trials: defending against deciphering. Lancet. 2002;359:614–8.PubMedCrossRef
41.
go back to reference Riebe D, Ehrman JK, Liguori G, Magal M, editors. ACSM’s guidelines for exercise testing and prescription. Philadelphia: Wolters Kluwer Health; 2016. Riebe D, Ehrman JK, Liguori G, Magal M, editors. ACSM’s guidelines for exercise testing and prescription. Philadelphia: Wolters Kluwer Health; 2016.
42.
go back to reference Mayhew JL, Ball TE, Bowen JC. Relative muscular endurance performance as a predictor of bench press strength in college men and women. Sports Med Training Rehabil. 1992;3:195–201.CrossRef Mayhew JL, Ball TE, Bowen JC. Relative muscular endurance performance as a predictor of bench press strength in college men and women. Sports Med Training Rehabil. 1992;3:195–201.CrossRef
43.
go back to reference Nash MS, Jacobs PL, Mendez AJ, Goldberg RB. Circuit resistance training improves the atherogenic lipid profiles of persons with chronic paraplegia. J Spinal Cord Med. 2001;24(1):2–9.PubMedCrossRef Nash MS, Jacobs PL, Mendez AJ, Goldberg RB. Circuit resistance training improves the atherogenic lipid profiles of persons with chronic paraplegia. J Spinal Cord Med. 2001;24(1):2–9.PubMedCrossRef
44.
go back to reference Jacobs PL, Nash MS, Rusinowski JW. Circuit training provides cardiorespiratory and strength benefits in persons with paraplegia. Med Sci Sport Exerc. 2001;33(5):711–7.CrossRef Jacobs PL, Nash MS, Rusinowski JW. Circuit training provides cardiorespiratory and strength benefits in persons with paraplegia. Med Sci Sport Exerc. 2001;33(5):711–7.CrossRef
45.
go back to reference Nash MS, van de Ven I, van Elk N, Johnson BM. Effects of circuit resistance training on fitness attributes and upper-extremity pain in middle-aged men with paraplegia. Arch Phys Med Rehabil. 2007;88(1):70–5.PubMedCrossRef Nash MS, van de Ven I, van Elk N, Johnson BM. Effects of circuit resistance training on fitness attributes and upper-extremity pain in middle-aged men with paraplegia. Arch Phys Med Rehabil. 2007;88(1):70–5.PubMedCrossRef
47.
go back to reference Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26(Suppl 1):S28–37.PubMedCrossRef Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26(Suppl 1):S28–37.PubMedCrossRef
48.
go back to reference Betts JA, Thompson D, Richardson JD, Chowdhury EA, Jeans M, Holman GD, Tsintzas K. Bath Breakfast Project (BBP)—examining the role of extended daily fasting in human energy balance and associated health outcomes: study protocol for a randomised controlled trial [ISRCTN31521726]. Trials. 2011;12:172.PubMedPubMedCentralCrossRef Betts JA, Thompson D, Richardson JD, Chowdhury EA, Jeans M, Holman GD, Tsintzas K. Bath Breakfast Project (BBP)—examining the role of extended daily fasting in human energy balance and associated health outcomes: study protocol for a randomised controlled trial [ISRCTN31521726]. Trials. 2011;12:172.PubMedPubMedCentralCrossRef
49.
go back to reference Compher C, Frankenfield D, Keim N, Roth-Yousey L, Evidence Analysis Working Group. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106:881–903.PubMedCrossRef Compher C, Frankenfield D, Keim N, Roth-Yousey L, Evidence Analysis Working Group. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106:881–903.PubMedCrossRef
50.
go back to reference Walhin JP, Richardson JD, Betts JA, Thompson D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J Physiol. 2013;591:6231–43.PubMedPubMedCentralCrossRef Walhin JP, Richardson JD, Betts JA, Thompson D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J Physiol. 2013;591:6231–43.PubMedPubMedCentralCrossRef
51.
go back to reference Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12.PubMedCrossRef Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12.PubMedCrossRef
52.
go back to reference Matthews JNS, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. Br Med J. 1990;300(6719):230–5.CrossRef Matthews JNS, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. Br Med J. 1990;300(6719):230–5.CrossRef
53.
go back to reference Wolever TMS, Jenkins DJA. The use of the glycemic index in predicting the blood-glucose response to mixed meals. Am J Clin Nutr. 1986;43(1):167–72.PubMedCrossRef Wolever TMS, Jenkins DJA. The use of the glycemic index in predicting the blood-glucose response to mixed meals. Am J Clin Nutr. 1986;43(1):167–72.PubMedCrossRef
54.
go back to reference Wolever TMS. Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values. Br J Nutr. 2004;91(2):295–300.PubMedCrossRef Wolever TMS. Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values. Br J Nutr. 2004;91(2):295–300.PubMedCrossRef
55.
go back to reference Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing-comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.PubMedCrossRef Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing-comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.PubMedCrossRef
56.
go back to reference Levy JC, Matthews DR, Hermans MP. Correct Homeostasis Model Assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21(12):2191–2.PubMedCrossRef Levy JC, Matthews DR, Hermans MP. Correct Homeostasis Model Assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21(12):2191–2.PubMedCrossRef
57.
go back to reference Little JP, Jung ME, Wright AE, Wright W, Manders RJ. Effects of high intensity interval exercise versus continuous moderate-intensity exercise on postprandial glycemic control assessed by continuous glucose monitoring in obese adults. Appl Physiol Nutr Metab. 2014;39:835–41.PubMedCrossRef Little JP, Jung ME, Wright AE, Wright W, Manders RJ. Effects of high intensity interval exercise versus continuous moderate-intensity exercise on postprandial glycemic control assessed by continuous glucose monitoring in obese adults. Appl Physiol Nutr Metab. 2014;39:835–41.PubMedCrossRef
58.
go back to reference Karstoft K, Christensen CS, Pedersen BK, Solomon TP. The acute effects of interval vs continuous-walking exercise on glycemic control in subjects with type 2 diabetes: a crossover, controlled study. J Clin Endocrinol Metab. 2014;99:3334–42.PubMedCrossRef Karstoft K, Christensen CS, Pedersen BK, Solomon TP. The acute effects of interval vs continuous-walking exercise on glycemic control in subjects with type 2 diabetes: a crossover, controlled study. J Clin Endocrinol Metab. 2014;99:3334–42.PubMedCrossRef
59.
go back to reference Freese EC, Gist NH, Acitelli RM, McConnell WJ, Beck CD, Hausman DB, Murrow JR, Cureton KJ, Evans EM. Acute and chronic effects of sprint interval exercise on postprandial lipemia in women at-risk for the metabolic syndrome. J Appl Physiol. 2015;118(7):872–9.PubMedCrossRef Freese EC, Gist NH, Acitelli RM, McConnell WJ, Beck CD, Hausman DB, Murrow JR, Cureton KJ, Evans EM. Acute and chronic effects of sprint interval exercise on postprandial lipemia in women at-risk for the metabolic syndrome. J Appl Physiol. 2015;118(7):872–9.PubMedCrossRef
60.
go back to reference van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536(Pt 1):295–304.PubMedPubMedCentralCrossRef van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536(Pt 1):295–304.PubMedPubMedCentralCrossRef
61.
go back to reference Bogardus C, Thuillez P, Ravussin E, Vasquez B, Narimiga M, Azhar S. Effect of muscle glycogen depletion on in vivo insulin action in man. J Clin Invest. 1983;72:1605–10.PubMedPubMedCentralCrossRef Bogardus C, Thuillez P, Ravussin E, Vasquez B, Narimiga M, Azhar S. Effect of muscle glycogen depletion on in vivo insulin action in man. J Clin Invest. 1983;72:1605–10.PubMedPubMedCentralCrossRef
62.
go back to reference Newsom SA, Schenk S, Thomas KM, Harber MP, Knuth ND, Goldenberg N, Horowitz JF. Energy deficit after exercise augments lipid mobilization but does not contribute to the exercise-induced increase in insulin sensitivity. J Appl Physiol. 2010;108:554–60.PubMedCrossRef Newsom SA, Schenk S, Thomas KM, Harber MP, Knuth ND, Goldenberg N, Horowitz JF. Energy deficit after exercise augments lipid mobilization but does not contribute to the exercise-induced increase in insulin sensitivity. J Appl Physiol. 2010;108:554–60.PubMedCrossRef
63.
go back to reference Holtz KA, Stephens BR, Sharoff CG, Chipkin SR, Braun B. The effect of carbohydrate availability following exercise on whole-body insulin action. Appl Physiol Nutr Metab. 2008;33:946–56.PubMedCrossRef Holtz KA, Stephens BR, Sharoff CG, Chipkin SR, Braun B. The effect of carbohydrate availability following exercise on whole-body insulin action. Appl Physiol Nutr Metab. 2008;33:946–56.PubMedCrossRef
Metadata
Title
Influence of upper-body continuous, resistance or high-intensity interval training (CRIT) on postprandial responses in persons with spinal cord injury: study protocol for a randomised controlled trial
Authors
David W. McMillan
Jennifer L. Maher
Kevin A. Jacobs
Armando J. Mendez
Mark S. Nash
James L. J. Bilzon
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Trials / Issue 1/2019
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-019-3583-1

Other articles of this Issue 1/2019

Trials 1/2019 Go to the issue