Skip to main content
Top
Published in: Trials 1/2018

Open Access 01-12-2018 | Study protocol

GRam stain-guided Antibiotics ChoicE for Ventilator-Associated Pneumonia (GRACE-VAP) trial: rationale and study protocol for a randomised controlled trial

Authors: Jumpei Yoshimura, Kazuma Yamakawa, Takahiro Kinoshita, Yoshinori Ohta, Takeshi Morimoto

Published in: Trials | Issue 1/2018

Login to get access

Abstract

Background

Optimising the use of antibiotic agents is a pressing challenge to overcoming the rapid emergence and spread of multidrug-resistant pathogens in intensive care units (ICUs). Although Gram staining may possibly provide immediate information for predicting pathogenic bacteria, Gram stain-guided initial antibiotic treatment is not well established in the ICU setting. We planned the GRam stain-guided Antibiotics ChoicE for Ventilator-Associated Pneumonia (GRACE-VAP) trial to investigate whether Gram staining can safely restrict the use of broad-spectrum antibiotics in patients with ventilator-associated pneumonia (VAP), which is one of the most common hospital-acquired infections in ICUs.

Methods/design

The GRACE-VAP trial is a multicentre, randomised, open-label parallel-group trial to assess the non-inferiority of Gram stain-guided initial antibiotic treatment to guidelines-based initial antibiotic treatment for the primary endpoint of clinical response rate in patients with VAP. Secondary endpoints include the coverage rates of initial antibiotic therapies, the selected rates of anti-pseudomonal agents and anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) agents as initial antibiotic therapies, 28-day all-cause mortality, ICU-free days, ventilator-free days and adverse events. Patients are randomly assigned to receive Gram stain-guided treatment or guidelines-based treatment at a ratio of 1:1. In the Gram stain group, results of Gram staining of endotracheal aspirate are used to guide the selection of antibiotics. In the guidelines group, the combination of an anti-pseudomonal agent and an anti-MRSA agent is administered. A total sample size of 200 was estimated to provide a power of 80% with a one-sided alpha level of 2.5% and a non-inferiority margin of 20%, considering 10% non-evaluable patients.

Discussion

The GRACE-VAP trial is expected to reveal whether Gram staining can reduce the use of broad-spectrum antibiotics without impairing patient outcomes and thereby provide evidence for an antibiotic selection strategy in patients with VAP.

Trial registration

Clinicaltrials.gov, NCT03506113. Registered on 29 March 2018.
University Hospital Medical Information Network, UMIN000031933. Registered on 26 March 2018.
Appendix
Available only for authorised users
Literature
1.
go back to reference Llor C, Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf. 2014;5:229–41.CrossRef Llor C, Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf. 2014;5:229–41.CrossRef
3.
go back to reference Wenzel RP. The antibiotic pipeline—challenges, costs, and values. N Engl J Med. 2004;351:523–6.CrossRef Wenzel RP. The antibiotic pipeline—challenges, costs, and values. N Engl J Med. 2004;351:523–6.CrossRef
4.
go back to reference Cassell GH, Mekalanos J. Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance. JAMA. 2001;285:601–5.CrossRef Cassell GH, Mekalanos J. Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance. JAMA. 2001;285:601–5.CrossRef
6.
go back to reference Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–9.CrossRef Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–9.CrossRef
7.
go back to reference Ponce de Leon-Rosales SP, Molinar-Ramos F, Dominguez-Cherit G, Rangel-Frausto MS, Vazquez-Ramos VG. Prevalence of infections in intensive care units in Mexico: a multicentre study. Crit Care Med. 2000;28:1316–21.CrossRef Ponce de Leon-Rosales SP, Molinar-Ramos F, Dominguez-Cherit G, Rangel-Frausto MS, Vazquez-Ramos VG. Prevalence of infections in intensive care units in Mexico: a multicentre study. Crit Care Med. 2000;28:1316–21.CrossRef
8.
go back to reference Erbay H, Yaicin AN, Serin S, Turgut H, Tomatir E, Cetin B, et al. Nosocomial infections in intensive care unit a Turkish university hospital: 2-year survey. Intensive Care Med. 2003;29:1482–8.CrossRef Erbay H, Yaicin AN, Serin S, Turgut H, Tomatir E, Cetin B, et al. Nosocomial infections in intensive care unit a Turkish university hospital: 2-year survey. Intensive Care Med. 2003;29:1482–8.CrossRef
9.
go back to reference Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;12:1057–98.CrossRef Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;12:1057–98.CrossRef
10.
go back to reference Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:e61–e111.CrossRef Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:e61–e111.CrossRef
11.
go back to reference Yoshimura J, Kinoshita T, Yamakawa K, Matsushima A, Nakamoto N, Hamasaki T, et al. Impact of Gram stain results on initial treatment selection in patients with ventilator-associated pneumonia: a retrospective analysis of two treatment algorithms. Crit Care. 2017;21:156.CrossRef Yoshimura J, Kinoshita T, Yamakawa K, Matsushima A, Nakamoto N, Hamasaki T, et al. Impact of Gram stain results on initial treatment selection in patients with ventilator-associated pneumonia: a retrospective analysis of two treatment algorithms. Crit Care. 2017;21:156.CrossRef
12.
go back to reference Seligman R, Seligman BG, Konkewicz L, Dos Santos RP. Accuracy of tracheal aspirate gram stain in predicting Staphylococcus aureus infection in ventilator-associated pneumonia. BMC Anesthesiol. 2015;15:19.CrossRef Seligman R, Seligman BG, Konkewicz L, Dos Santos RP. Accuracy of tracheal aspirate gram stain in predicting Staphylococcus aureus infection in ventilator-associated pneumonia. BMC Anesthesiol. 2015;15:19.CrossRef
13.
go back to reference Gottesman T, Yossepowitch O, Lerner E, Schwartz-Harari O, Soroksky A, Yekutieli D, et al. The accuracy of Gram stain of respiratory specimens in excluding Staphylococcus aureus in ventilator-associated pneumonia. J Crit Care. 2014;29:739–42.CrossRef Gottesman T, Yossepowitch O, Lerner E, Schwartz-Harari O, Soroksky A, Yekutieli D, et al. The accuracy of Gram stain of respiratory specimens in excluding Staphylococcus aureus in ventilator-associated pneumonia. J Crit Care. 2014;29:739–42.CrossRef
14.
go back to reference O’Horo JC, Thompson D, Safdar N. Is the gram stain useful in the microbiologic diagnosis of VAP? A meta-analysis. Clin Infect Dis. 2012;55:551–61.CrossRef O’Horo JC, Thompson D, Safdar N. Is the gram stain useful in the microbiologic diagnosis of VAP? A meta-analysis. Clin Infect Dis. 2012;55:551–61.CrossRef
15.
go back to reference Tetenta S, Metersky ML. Tracheal aspirate Gram stain has limited sensitivity and specificity for detecting Staphylococcus aureus. Respirology. 2011;16:86–9.CrossRef Tetenta S, Metersky ML. Tracheal aspirate Gram stain has limited sensitivity and specificity for detecting Staphylococcus aureus. Respirology. 2011;16:86–9.CrossRef
16.
go back to reference Blot F, Raynard B, Chachaty E, Tancrede C, Antoun S, Nitenberg G. Value of gram stain examination of lower respiratory tract secretions for early diagnosis of nosocomial pneumonia. Am J Respir Crit Care Med. 2000;162:1731–7.CrossRef Blot F, Raynard B, Chachaty E, Tancrede C, Antoun S, Nitenberg G. Value of gram stain examination of lower respiratory tract secretions for early diagnosis of nosocomial pneumonia. Am J Respir Crit Care Med. 2000;162:1731–7.CrossRef
17.
go back to reference Piaggio G, Elbourne DR, Pocock SJ, Evans SJ, Altman DG; CONSORT Group. Reporting of noninferiority and equivalence randomized trial: extension of the CONSORT 2010 statement. JAMA. 2012;308:2594–604.CrossRef Piaggio G, Elbourne DR, Pocock SJ, Evans SJ, Altman DG; CONSORT Group. Reporting of noninferiority and equivalence randomized trial: extension of the CONSORT 2010 statement. JAMA. 2012;308:2594–604.CrossRef
18.
go back to reference Luna CM, Blanzaco D, Niederman MS, Matarucco W, Baredes NC, Desmery P, et al. Resolution of ventilator-associated pneumonia: prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome. Crit Care Med. 2003;31:676–82.CrossRef Luna CM, Blanzaco D, Niederman MS, Matarucco W, Baredes NC, Desmery P, et al. Resolution of ventilator-associated pneumonia: prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome. Crit Care Med. 2003;31:676–82.CrossRef
19.
go back to reference Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, et al. S. aureus Endocarditis and Bacteremia Study Group. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355:653–65.CrossRef Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, et al. S. aureus Endocarditis and Bacteremia Study Group. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355:653–65.CrossRef
20.
go back to reference Chastre J, Wunderink R, Prokocimer P, Lee M, Kaniga K, Friedland I. Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: a multicenter, randomized study. Crit Care Med. 2008;36:1089–96.CrossRef Chastre J, Wunderink R, Prokocimer P, Lee M, Kaniga K, Friedland I. Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: a multicenter, randomized study. Crit Care Med. 2008;36:1089–96.CrossRef
21.
go back to reference Rubinstein E, Lalani T, Corey GR, Kanafani ZA, Nannini EC, Rocha MG, ATTAIN Study Group, et al. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis. 2011;52:31–40.CrossRef Rubinstein E, Lalani T, Corey GR, Kanafani ZA, Nannini EC, Rocha MG, ATTAIN Study Group, et al. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis. 2011;52:31–40.CrossRef
Metadata
Title
GRam stain-guided Antibiotics ChoicE for Ventilator-Associated Pneumonia (GRACE-VAP) trial: rationale and study protocol for a randomised controlled trial
Authors
Jumpei Yoshimura
Kazuma Yamakawa
Takahiro Kinoshita
Yoshinori Ohta
Takeshi Morimoto
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Trials / Issue 1/2018
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-018-2971-2

Other articles of this Issue 1/2018

Trials 1/2018 Go to the issue