Skip to main content
Top
Published in: Trials 1/2018

Open Access 01-12-2018 | Commentary

Outcome measures in clinical trials of treatments for acute severe haemorrhage

Authors: Amy Brenner, Monica Arribas, Jack Cuzick, Vipul Jairath, Simon Stanworth, Katharine Ker, Haleema Shakur-Still, Ian Roberts

Published in: Trials | Issue 1/2018

Login to get access

Abstract

Background

Acute severe haemorrhage is a common complication of injury, childbirth, surgery, gastrointestinal pathologies and other medical conditions. Bleeding is a major cause of death, but patients also die from non-bleeding causes, the frequency of which varies by the site of haemorrhage and between populations. Because patients can bleed to death within hours, established interventions inevitably take priority over randomisation into a trial. These circumstances raise challenges in selecting appropriate outcome measures for clinical trials of haemostatic interventions.

Main body

We use data from three large randomised controlled trials in acute severe haemorrhage (CRASH-2, WOMAN and HALT-IT) to explore the strengths and limitations of outcome measures commonly used in trials of haemostatic treatments, including all-cause and cause-specific mortality, blood transfusion and surgical interventions. Many deaths following acute severe haemorrhage are due to patient comorbidities or complications rather than bleeding. If non-bleeding deaths are unaffected by a haemostatic intervention, even large trials will have low power to detect an effect on all-cause mortality. Due to the dilution from deaths unaffected or reduced by the trial treatment, all-cause mortality can also obscure important harmful effects. Additionally, because the relative contributions of different causes of death vary within and between patient populations, all-cause mortality is not generalisable. Different causes of death occur at different time intervals from bleeding onset, with bleeding deaths generally occurring early. Time-specific mortality can therefore be used as a proxy for cause in un-blinded trials where bias is a concern or in situations where cause of death cannot be assessed. Urgent treatment is critical, and so post-randomisation blood transfusion and surgery are often planned before or at the time of randomisation and therefore cannot be influenced by the trial treatment.

Conclusions

All-cause mortality has low power, lacks generalisability and can obscure harmful effects. Cause-specific mortality, such as death due to bleeding or thrombosis, avoids these drawbacks. In certain scenarios, time-specific mortality can be used as a proxy for cause-specific mortality. Blood transfusion and surgical procedures have limited utility as outcome measures in trials of haemostatic treatments.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hunt BJ, Allard S, Keeling D, Norfolk D, Stanworth SJ, Pendry K. A practical guideline for the haematological management of major haemorrhage. Br J Haematol. 2015;170:788–803.CrossRef Hunt BJ, Allard S, Keeling D, Norfolk D, Stanworth SJ, Pendry K. A practical guideline for the haematological management of major haemorrhage. Br J Haematol. 2015;170:788–803.CrossRef
2.
go back to reference Curry N, Hopewell S, Dorée C, Hyde C, Brohi K, Stanworth S. The acute management of trauma hemorrhage: a systematic review of randomized controlled trials. Crit Care. 2011;15:R92.CrossRef Curry N, Hopewell S, Dorée C, Hyde C, Brohi K, Stanworth S. The acute management of trauma hemorrhage: a systematic review of randomized controlled trials. Crit Care. 2011;15:R92.CrossRef
3.
go back to reference Parry Smith WR, Gallos ID, Williams HM, Widmer M, Angolkar M, Tobias A, et al. First-line uterotonics for treating postpartum haemorrhage: a systematic review and network meta-analysis. Cochrane Database Syst Rev. 2017;8:CD012754. Parry Smith WR, Gallos ID, Williams HM, Widmer M, Angolkar M, Tobias A, et al. First-line uterotonics for treating postpartum haemorrhage: a systematic review and network meta-analysis. Cochrane Database Syst Rev. 2017;8:CD012754.
4.
go back to reference Bennett C, Klingenberg SL, Langholz E, Gluud LL. Tranexamic acid for upper gastrointestinal bleeding. Cochrane Database Syst Rev. 2014;11:CD006640. Bennett C, Klingenberg SL, Langholz E, Gluud LL. Tranexamic acid for upper gastrointestinal bleeding. Cochrane Database Syst Rev. 2014;11:CD006640.
5.
go back to reference CRASH-2 trial collaborators, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376:23–32.CrossRef CRASH-2 trial collaborators, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376:23–32.CrossRef
6.
go back to reference WOMAN Trial Collaborators. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389:2105–16.CrossRef WOMAN Trial Collaborators. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389:2105–16.CrossRef
7.
go back to reference Roberts I, Coats T, Edwards P, Gilmore I, Jairath V, Ker K, et al. HALT-IT—tranexamic acid for the treatment of gastrointestinal bleeding: study protocol for a randomised controlled trial. Trials. 2014;15:450.CrossRef Roberts I, Coats T, Edwards P, Gilmore I, Jairath V, Ker K, et al. HALT-IT—tranexamic acid for the treatment of gastrointestinal bleeding: study protocol for a randomised controlled trial. Trials. 2014;15:450.CrossRef
8.
go back to reference Penston J. Should we use total mortality rather than cancer specific mortality to judge cancer screening programmes? Yes. Br Med J. 2011;343:938–9. Penston J. Should we use total mortality rather than cancer specific mortality to judge cancer screening programmes? Yes. Br Med J. 2011;343:938–9.
9.
go back to reference Lauer MS, Blackstone EH, Young JB, Topol EJ, Cleveland F. Cause of death in clinical research: time for a reassessment? J Am Coll Cardiol. 1999;34:618–20.CrossRef Lauer MS, Blackstone EH, Young JB, Topol EJ, Cleveland F. Cause of death in clinical research: time for a reassessment? J Am Coll Cardiol. 1999;34:618–20.CrossRef
10.
go back to reference Yusuf S, Negassa A. Choice of clinical outcomes in randomized trials of heart failure therapies: disease-specific or overall outcomes? Am Heart J. 2002;143:22–8.CrossRef Yusuf S, Negassa A. Choice of clinical outcomes in randomized trials of heart failure therapies: disease-specific or overall outcomes? Am Heart J. 2002;143:22–8.CrossRef
11.
go back to reference Cuzick J. Primary endpoints for randomised trials of cancer therapy. Lancet. 2008;371:2156–8.CrossRef Cuzick J. Primary endpoints for randomised trials of cancer therapy. Lancet. 2008;371:2156–8.CrossRef
13.
go back to reference Gayet-Ageron A, Prieto-Merino D, Ker K, Shakur H, Ageron F-X, Roberts I, et al. Effect of treatment delay on the effectiveness and safety of antifibrinolytics in acute severe haemorrhage: a meta-analysis of individual patient-level data from 40 138 bleeding patients. Lancet. 2017;391:125–32.CrossRef Gayet-Ageron A, Prieto-Merino D, Ker K, Shakur H, Ageron F-X, Roberts I, et al. Effect of treatment delay on the effectiveness and safety of antifibrinolytics in acute severe haemorrhage: a meta-analysis of individual patient-level data from 40 138 bleeding patients. Lancet. 2017;391:125–32.CrossRef
14.
go back to reference CRASH-2 collaborators, Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377:1096–101 e2.CrossRef CRASH-2 collaborators, Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377:1096–101 e2.CrossRef
15.
go back to reference Sehdev AES, Hutchins GM. Problems with proper completion and accuracy of the cause-of-death statement. Arch Intern Med. 2001;161:277.CrossRef Sehdev AES, Hutchins GM. Problems with proper completion and accuracy of the cause-of-death statement. Arch Intern Med. 2001;161:277.CrossRef
16.
go back to reference Brooks EG, Reed KD. Principles and pitfalls: a guide to death certification. Clin Med Res. 2015;13:74–82.CrossRef Brooks EG, Reed KD. Principles and pitfalls: a guide to death certification. Clin Med Res. 2015;13:74–82.CrossRef
17.
go back to reference Jaffar S, Leach A, Smith PG, Cutts F, Greenwood B. Effects of misclassification of causes of death on the power of a trial to assess the efficacy of a pneumococcal conjugate vaccine in The Gambia. Int J Epidemiol. 2003;32:430–6.CrossRef Jaffar S, Leach A, Smith PG, Cutts F, Greenwood B. Effects of misclassification of causes of death on the power of a trial to assess the efficacy of a pneumococcal conjugate vaccine in The Gambia. Int J Epidemiol. 2003;32:430–6.CrossRef
18.
go back to reference Miller AB, Feld R, Fontana R, Gohagan JK, Jatoi I, Lawrence W, et al. Changes in and impact of the death review process in the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial. Rev Recent Clin Trials. 2015;10:206–11.CrossRef Miller AB, Feld R, Fontana R, Gohagan JK, Jatoi I, Lawrence W, et al. Changes in and impact of the death review process in the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial. Rev Recent Clin Trials. 2015;10:206–11.CrossRef
19.
go back to reference Granger CB, Vogel V, Cummings SR, Held P, Fiedorek F, Lawrence M, et al. Do we need to adjudicate major clinical events? Clin Trials. 2008;5:56–60.CrossRef Granger CB, Vogel V, Cummings SR, Held P, Fiedorek F, Lawrence M, et al. Do we need to adjudicate major clinical events? Clin Trials. 2008;5:56–60.CrossRef
20.
go back to reference Ndounga Diakou LA, Trinquart L, Hróbjartsson A, Barnes C, Yavchitz A, Ravaud P, et al. Comparison of central adjudication of outcomes and onsite outcome assessment on treatment effect estimates. Cochrane Database Syst Rev. 2016;3:MR000043.PubMed Ndounga Diakou LA, Trinquart L, Hróbjartsson A, Barnes C, Yavchitz A, Ravaud P, et al. Comparison of central adjudication of outcomes and onsite outcome assessment on treatment effect estimates. Cochrane Database Syst Rev. 2016;3:MR000043.PubMed
21.
go back to reference Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J. Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2017;65:310–35.CrossRef Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J. Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2017;65:310–35.CrossRef
22.
go back to reference Algattas H, Huang JH. Traumatic brain injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int J Mol Sci. 2013;15:309–41.CrossRef Algattas H, Huang JH. Traumatic brain injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int J Mol Sci. 2013;15:309–41.CrossRef
23.
go back to reference Mckee AC, Daneshvar DH. The neuropathology of traumatic brain injury. Handb Clin Neurol. 2015;127:45–66.CrossRef Mckee AC, Daneshvar DH. The neuropathology of traumatic brain injury. Handb Clin Neurol. 2015;127:45–66.CrossRef
24.
go back to reference Brott T, Broderick J, Kothari R, Barsan W, Tomsick T, Sauerbeck L, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28:1–5.CrossRef Brott T, Broderick J, Kothari R, Barsan W, Tomsick T, Sauerbeck L, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28:1–5.CrossRef
25.
go back to reference Kazui S, Naritomi H, Yamamoto H, Sawada T, Yamaguchi T. Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke. 1996;27:1783–7.CrossRef Kazui S, Naritomi H, Yamamoto H, Sawada T, Yamaguchi T. Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke. 1996;27:1783–7.CrossRef
26.
go back to reference Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373:1632–44.CrossRef Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373:1632–44.CrossRef
27.
go back to reference Sprigg N, Flaherty K, Appleton JP, Salman RA-S, Bereczki D, Beridze M, et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet. 2018;391:2107–15 Available from: https://doi.org/10.1016/S0140-6736(18)31033-X. Accessed 16 May 2018.CrossRef Sprigg N, Flaherty K, Appleton JP, Salman RA-S, Bereczki D, Beridze M, et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet. 2018;391:2107–15 Available from: https://​doi.​org/​10.​1016/​S0140-6736(18)31033-X. Accessed 16 May 2018.CrossRef
28.
go back to reference Ker K, Edwards P, Perel P, Shakur H, Roberts I. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. BMJ. 2012;344:e3054.CrossRef Ker K, Edwards P, Perel P, Shakur H, Roberts I. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. BMJ. 2012;344:e3054.CrossRef
30.
go back to reference Laine L, Spiegel B, Rostom A, Moayyedi P, Kuipers EJ, Bardou M, et al. Methodology for randomized trials of patients with nonvariceal upper gastrointestinal bleeding: recommendations from an international consensus conference. Am J Gastroenterol. 2010;105:540–50.CrossRef Laine L, Spiegel B, Rostom A, Moayyedi P, Kuipers EJ, Bardou M, et al. Methodology for randomized trials of patients with nonvariceal upper gastrointestinal bleeding: recommendations from an international consensus conference. Am J Gastroenterol. 2010;105:540–50.CrossRef
Metadata
Title
Outcome measures in clinical trials of treatments for acute severe haemorrhage
Authors
Amy Brenner
Monica Arribas
Jack Cuzick
Vipul Jairath
Simon Stanworth
Katharine Ker
Haleema Shakur-Still
Ian Roberts
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Trials / Issue 1/2018
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-018-2900-4

Other articles of this Issue 1/2018

Trials 1/2018 Go to the issue