Skip to main content
Top
Published in: Trials 1/2018

Open Access 01-12-2018 | Research

The Comparative Effectiveness of Innovative Treatments for Cancer (CEIT-Cancer) project: Rationale and design of the database and the collection of evidence available at approval of novel drugs

Authors: Aviv Ladanie, Benjamin Speich, Florian Naudet, Arnav Agarwal, Tiago V. Pereira, Francesco Sclafani, Juan Martin-Liberal, Thomas Schmid, Hannah Ewald, John P. A. Ioannidis, Heiner C. Bucher, Benjamin Kasenda, Lars G. Hemkens

Published in: Trials | Issue 1/2018

Login to get access

Abstract

Background

The available evidence on the benefits and harms of novel drugs and therapeutic biologics at the time of approval is reported in publicly available documents provided by the US Food and Drug Administration (FDA). We aimed to create a comprehensive database providing the relevant information required to systematically analyze and assess this early evidence in meta-epidemiological research.

Methods

We designed a modular and flexible database of systematically collected data. We identified all novel cancer drugs and therapeutic biologics approved by the FDA between 2000 and 2016, recorded regulatory characteristics, acquired the corresponding FDA approval documents, identified all clinical trials reported therein, and extracted trial design characteristics and treatment effects. Herein, we describe the rationale and design of the data collection process, particularly the organization of the data capture, the identification and eligibility assessment of clinical trials, and the data extraction activities.

Discussion

We established a comprehensive database on the comparative effects of drugs and therapeutic biologics approved by the FDA over a time period of 17 years for the treatment of cancer (solid tumors and hematological malignancies). The database provides information on the clinical trial evidence available at the time of approval of novel cancer treatments. The modular nature and structure of the database and the data collection processes allow updates, expansions, and adaption for a continuous meta-epidemiological analysis of novel drugs.
The database allows us to systematically evaluate benefits and harms of novel drugs and therapeutic biologics. It provides a useful basis for meta-epidemiological research on the comparative effects of innovative cancer treatments and continuous evaluations of regulatory developments.
Appendix
Available only for authorised users
Literature
1.
go back to reference Turner E. Correction/clarification about FDA review documents. PLoS Med. 2005;2:e422 author reply.CrossRef Turner E. Correction/clarification about FDA review documents. PLoS Med. 2005;2:e422 author reply.CrossRef
5.
go back to reference Darrow JJ, Kesselheim AS. Drug development and FDA approval, 1938-2013. N Engl J Med. 2014;370:e39.CrossRef Darrow JJ, Kesselheim AS. Drug development and FDA approval, 1938-2013. N Engl J Med. 2014;370:e39.CrossRef
6.
go back to reference Downing NS, Aminawung JA, Shah ND, Krumholz HM, Ross JS. Clinical trial evidence supporting FDA approval of novel therapeutic agents, 2005-2012. JAMA. 2014;311:368–77.CrossRef Downing NS, Aminawung JA, Shah ND, Krumholz HM, Ross JS. Clinical trial evidence supporting FDA approval of novel therapeutic agents, 2005-2012. JAMA. 2014;311:368–77.CrossRef
7.
go back to reference Kim C, Prasad V. Cancer drugs approved on the basis of a surrogate end point and subsequent overall survival: an analysis of 5 years of US Food and Drug Administration approvals. JAMA Intern Med. 2015;175:1992–4.CrossRef Kim C, Prasad V. Cancer drugs approved on the basis of a surrogate end point and subsequent overall survival: an analysis of 5 years of US Food and Drug Administration approvals. JAMA Intern Med. 2015;175:1992–4.CrossRef
8.
go back to reference Kim C, Prasad V. Strength of validation for surrogate end points used in the US Food and Drug Administration’s approval of oncology drugs. Mayo Clin Proc. 2016; pii: S0025-6196(16)00125–7. Kim C, Prasad V. Strength of validation for surrogate end points used in the US Food and Drug Administration’s approval of oncology drugs. Mayo Clin Proc. 2016; pii: S0025-6196(16)00125–7.
9.
go back to reference Naci H, Wouters OJ, Gupta R, Ioannidis JPA. Timing and characteristics of cumulative evidence available on novel therapeutic agents receiving Food and Drug Administration accelerated approval. Milbank Q. 2017;95:261–90.CrossRef Naci H, Wouters OJ, Gupta R, Ioannidis JPA. Timing and characteristics of cumulative evidence available on novel therapeutic agents receiving Food and Drug Administration accelerated approval. Milbank Q. 2017;95:261–90.CrossRef
10.
go back to reference Tsimberidou AM, Braiteh F, Stewart DJ, Kurzrock R. Ultimate fate of oncology drugs approved by the us food and drug administration without a randomized trial. J Clin Oncol. 2009;27:6243–50.CrossRef Tsimberidou AM, Braiteh F, Stewart DJ, Kurzrock R. Ultimate fate of oncology drugs approved by the us food and drug administration without a randomized trial. J Clin Oncol. 2009;27:6243–50.CrossRef
11.
go back to reference Davis C, Naci H, Gurpinar E, Poplavska E, Pinto A, Aggarwal A. Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by European Medicines Agency: retrospective cohort study of drug approvals 2009-13. BMJ. 2017;359:j4530.CrossRef Davis C, Naci H, Gurpinar E, Poplavska E, Pinto A, Aggarwal A. Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by European Medicines Agency: retrospective cohort study of drug approvals 2009-13. BMJ. 2017;359:j4530.CrossRef
12.
go back to reference Hartmann M, Mayer-Nicolai C, Pfaff O. Approval probabilities and regulatory review patterns for anticancer drugs in the European Union. Crit Rev Oncol Hematol. 2013;87:112–21.CrossRef Hartmann M, Mayer-Nicolai C, Pfaff O. Approval probabilities and regulatory review patterns for anticancer drugs in the European Union. Crit Rev Oncol Hematol. 2013;87:112–21.CrossRef
13.
go back to reference Sridhara R, Johnson JR, Justice R, Keegan P, Chakravarty A, Pazdur R. Review of oncology and hematology drug product approvals at the US Food and Drug Administration between July 2005 and December 2007. J Natl Cancer Inst. 2010;102:230–43.CrossRef Sridhara R, Johnson JR, Justice R, Keegan P, Chakravarty A, Pazdur R. Review of oncology and hematology drug product approvals at the US Food and Drug Administration between July 2005 and December 2007. J Natl Cancer Inst. 2010;102:230–43.CrossRef
17.
go back to reference Lanthier M, Miller KL, Nardinelli C, Woodcock J. An improved approach to measuring drug innovation finds steady rates of first-in-class pharmaceuticals, 1987-2011. Health Aff (Millwood). 2013;32:1433–9.CrossRef Lanthier M, Miller KL, Nardinelli C, Woodcock J. An improved approach to measuring drug innovation finds steady rates of first-in-class pharmaceuticals, 1987-2011. Health Aff (Millwood). 2013;32:1433–9.CrossRef
21.
go back to reference Institute of Medicine. Rare diseases and orphan products: accelerating research and development. Washington: The National Academies Press; 2010. Institute of Medicine. Rare diseases and orphan products: accelerating research and development. Washington: The National Academies Press; 2010.
22.
go back to reference Turner EH. How to access and process FDA drug approval packages for use in research. BMJ. 2013;347:f5992.CrossRef Turner EH. How to access and process FDA drug approval packages for use in research. BMJ. 2013;347:f5992.CrossRef
23.
go back to reference Ladanie A, Ewald H, Kasenda B, Hemkens LG. How to use FDA drug approval documents for evidence syntheses. BMJ. 2018;362:k2815.CrossRef Ladanie A, Ewald H, Kasenda B, Hemkens LG. How to use FDA drug approval documents for evidence syntheses. BMJ. 2018;362:k2815.CrossRef
24.
go back to reference McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22:276–82.CrossRef McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22:276–82.CrossRef
25.
go back to reference Parmar MKB, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17:2815–34.CrossRef Parmar MKB, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17:2815–34.CrossRef
26.
go back to reference Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16.CrossRef Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16.CrossRef
27.
go back to reference Djulbegovic B, Glasziou P, Klocksieben FA, Reljic T, VanDenBergh M, et al. Larger effect sizes in nonrandomized studies are associated with higher rates of EMA licensing approval. J Clin Epidemiol. 2018;98:24–32.CrossRef Djulbegovic B, Glasziou P, Klocksieben FA, Reljic T, VanDenBergh M, et al. Larger effect sizes in nonrandomized studies are associated with higher rates of EMA licensing approval. J Clin Epidemiol. 2018;98:24–32.CrossRef
28.
go back to reference Zeitoun JD, Baron G, Vivot A, Atal I, Downing NS, Ross JS, et al. Post-marketing research and its outcome for novel anticancer agents approved by both the FDA and EMA between 2005 and 2010: a cross-sectional study. Int J Cancer. 2018;142:414–23.CrossRef Zeitoun JD, Baron G, Vivot A, Atal I, Downing NS, Ross JS, et al. Post-marketing research and its outcome for novel anticancer agents approved by both the FDA and EMA between 2005 and 2010: a cross-sectional study. Int J Cancer. 2018;142:414–23.CrossRef
29.
go back to reference Barnes TA, Amir E, Templeton AJ, Gomez-Garcia S, Navarro B, Seruga B, et al. Efficacy, safety, tolerability and price of newly approved drugs in solid tumors. Cancer Treat Rev. 2017;56:1–7.CrossRef Barnes TA, Amir E, Templeton AJ, Gomez-Garcia S, Navarro B, Seruga B, et al. Efficacy, safety, tolerability and price of newly approved drugs in solid tumors. Cancer Treat Rev. 2017;56:1–7.CrossRef
30.
go back to reference Booth CM, Del Paggio JC. Approvals in 2016: questioning the clinical benefit of anticancer therapies. Nat Rev Clin Oncol. 2017;14:135–6.CrossRef Booth CM, Del Paggio JC. Approvals in 2016: questioning the clinical benefit of anticancer therapies. Nat Rev Clin Oncol. 2017;14:135–6.CrossRef
31.
go back to reference Brooks N, Campone M, Paddock S, Shortenhaus S, Grainger D, Zummo J, et al. Approving cancer treatments based on endpoints other than overall survival: an analysis of historical data using the PACE continuous innovation indicators (CII). Drugs Context. 2017;6:212507.CrossRef Brooks N, Campone M, Paddock S, Shortenhaus S, Grainger D, Zummo J, et al. Approving cancer treatments based on endpoints other than overall survival: an analysis of historical data using the PACE continuous innovation indicators (CII). Drugs Context. 2017;6:212507.CrossRef
32.
go back to reference Grossmann N, Del Paggio JC, Wolf S, Sullivan R, Booth CM, Rosian K, et al. Five years of EMA-approved systemic cancer therapies for solid tumours-a comparison of two thresholds for meaningful clinical benefit. Eur J Cancer. 2017;82:66–71.CrossRef Grossmann N, Del Paggio JC, Wolf S, Sullivan R, Booth CM, Rosian K, et al. Five years of EMA-approved systemic cancer therapies for solid tumours-a comparison of two thresholds for meaningful clinical benefit. Eur J Cancer. 2017;82:66–71.CrossRef
33.
go back to reference Naci H, Smalley KR, Kesselheim AS. Characteristics of preapproval and postapproval studies for drugs granted accelerated approval by the US Food and Drug Administration. JAMA. 2017;318:626–36.CrossRef Naci H, Smalley KR, Kesselheim AS. Characteristics of preapproval and postapproval studies for drugs granted accelerated approval by the US Food and Drug Administration. JAMA. 2017;318:626–36.CrossRef
34.
go back to reference Pease AM, Krumholz HM, Downing NS, Aminawung JA, Shah ND, Ross JS. Postapproval studies of drugs initially approved by the FDA on the basis of limited evidence: systematic review. BMJ. 2017;357:j1680.CrossRef Pease AM, Krumholz HM, Downing NS, Aminawung JA, Shah ND, Ross JS. Postapproval studies of drugs initially approved by the FDA on the basis of limited evidence: systematic review. BMJ. 2017;357:j1680.CrossRef
35.
go back to reference Salas-Vega S, Iliopoulos O, Mossialos E. Assessment of overall survival, quality of life, and safety benefits associated with new cancer medicines. JAMA Oncol. 2017;3:382–90.CrossRef Salas-Vega S, Iliopoulos O, Mossialos E. Assessment of overall survival, quality of life, and safety benefits associated with new cancer medicines. JAMA Oncol. 2017;3:382–90.CrossRef
36.
go back to reference Smith BD, DeZern AE, Bastian AW, Durie BGM. Meaningful endpoints for therapies approved for hematologic malignancies. Cancer. 2017;123:1689–94.CrossRef Smith BD, DeZern AE, Bastian AW, Durie BGM. Meaningful endpoints for therapies approved for hematologic malignancies. Cancer. 2017;123:1689–94.CrossRef
37.
go back to reference Tibau A, Molto C, Ocana A, Templeton AJ, Del Carpio LP, Del Paggio JC, et al. Magnitude of clinical benefit of cancer drugs approved by the US Food and Drug Administration. J Natl Cancer Inst. 2018;110:486–92.CrossRef Tibau A, Molto C, Ocana A, Templeton AJ, Del Carpio LP, Del Paggio JC, et al. Magnitude of clinical benefit of cancer drugs approved by the US Food and Drug Administration. J Natl Cancer Inst. 2018;110:486–92.CrossRef
38.
go back to reference Grossmann N, Wild C. Between January 2009 and April 2016, 134 novel anticancer therapies were approved: what is the level of knowledge concerning the clinical benefit at the time of approval? ESMO Open. 2016;1:e000125.PubMed Grossmann N, Wild C. Between January 2009 and April 2016, 134 novel anticancer therapies were approved: what is the level of knowledge concerning the clinical benefit at the time of approval? ESMO Open. 2016;1:e000125.PubMed
39.
go back to reference Hoekman J, Boon WP, Bouvy JC, Ebbers HC, de Jong JP, De Bruin ML. Use of the conditional marketing authorization pathway for oncology medicines in Europe. Clin Pharmacol Ther. 2015;98:534–41.CrossRef Hoekman J, Boon WP, Bouvy JC, Ebbers HC, de Jong JP, De Bruin ML. Use of the conditional marketing authorization pathway for oncology medicines in Europe. Clin Pharmacol Ther. 2015;98:534–41.CrossRef
40.
go back to reference Wang B, Kesselheim AS. Characteristics of efficacy evidence supporting approval of supplemental indications for prescription drugs in United States, 2005-14: systematic review. BMJ. 2015;351:h4679.CrossRef Wang B, Kesselheim AS. Characteristics of efficacy evidence supporting approval of supplemental indications for prescription drugs in United States, 2005-14: systematic review. BMJ. 2015;351:h4679.CrossRef
41.
go back to reference Winstone J, Chadda S, Ralston S, Sajosi P. Review and comparison of clinical evidence submitted to support European medicines agency market authorization of orphan-designated oncological treatments. Orphanet J Rare Dis. 2015;10:139.CrossRef Winstone J, Chadda S, Ralston S, Sajosi P. Review and comparison of clinical evidence submitted to support European medicines agency market authorization of orphan-designated oncological treatments. Orphanet J Rare Dis. 2015;10:139.CrossRef
42.
go back to reference Fojo T, Mailankody S, Lo A. Unintended consequences of expensive cancer therapeutics-the pursuit of marginal indications and a me-too mentality that stifles innovation and creativity: the John Conley lecture. JAMA Otolaryngol Head Neck Surg. 2014;140:1225–36.CrossRef Fojo T, Mailankody S, Lo A. Unintended consequences of expensive cancer therapeutics-the pursuit of marginal indications and a me-too mentality that stifles innovation and creativity: the John Conley lecture. JAMA Otolaryngol Head Neck Surg. 2014;140:1225–36.CrossRef
43.
go back to reference Martell RE, Sermer D, Getz K, Kaitin KI. Oncology drug development and approval of systemic anticancer therapy by the U.S. Food and Drug Administration. Oncologist. 2013;18:104–11.CrossRef Martell RE, Sermer D, Getz K, Kaitin KI. Oncology drug development and approval of systemic anticancer therapy by the U.S. Food and Drug Administration. Oncologist. 2013;18:104–11.CrossRef
44.
go back to reference Thomas RH, Freeman MK, Hughes PJ. Preapproval and postapproval availability of published comparative efficacy research on biological agents. Am J Health Syst Pharm. 2013;70:1250–5.CrossRef Thomas RH, Freeman MK, Hughes PJ. Preapproval and postapproval availability of published comparative efficacy research on biological agents. Am J Health Syst Pharm. 2013;70:1250–5.CrossRef
45.
go back to reference Goldberg NH, Schneeweiss S, Kowal MK, Gagne JJ. Availability of comparative efficacy data at the time of drug approval in the United States. JAMA. 2011;305:1786–9.CrossRef Goldberg NH, Schneeweiss S, Kowal MK, Gagne JJ. Availability of comparative efficacy data at the time of drug approval in the United States. JAMA. 2011;305:1786–9.CrossRef
46.
go back to reference Johnson JR, Ning YM, Farrell A, Justice R, Keegan P, Pazdur R. Accelerated approval of oncology products: the food and drug administration experience. J Natl Cancer Inst. 2011;103:636–44.CrossRef Johnson JR, Ning YM, Farrell A, Justice R, Keegan P, Pazdur R. Accelerated approval of oncology products: the food and drug administration experience. J Natl Cancer Inst. 2011;103:636–44.CrossRef
47.
go back to reference Kesselheim AS, Myers JA, Avorn J. Characteristics of clinical trials to support approval of orphan vs nonorphan drugs for cancer. JAMA. 2011;305:2320–6.CrossRef Kesselheim AS, Myers JA, Avorn J. Characteristics of clinical trials to support approval of orphan vs nonorphan drugs for cancer. JAMA. 2011;305:2320–6.CrossRef
48.
go back to reference Ocana A, Tannock IF. When are “positive” clinical trials in oncology truly positive? J Natl Cancer Inst. 2011;103:16–20.CrossRef Ocana A, Tannock IF. When are “positive” clinical trials in oncology truly positive? J Natl Cancer Inst. 2011;103:16–20.CrossRef
Metadata
Title
The Comparative Effectiveness of Innovative Treatments for Cancer (CEIT-Cancer) project: Rationale and design of the database and the collection of evidence available at approval of novel drugs
Authors
Aviv Ladanie
Benjamin Speich
Florian Naudet
Arnav Agarwal
Tiago V. Pereira
Francesco Sclafani
Juan Martin-Liberal
Thomas Schmid
Hannah Ewald
John P. A. Ioannidis
Heiner C. Bucher
Benjamin Kasenda
Lars G. Hemkens
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Trials / Issue 1/2018
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-018-2877-z

Other articles of this Issue 1/2018

Trials 1/2018 Go to the issue