Skip to main content
Top
Published in: Trials 1/2018

Open Access 01-12-2018 | Study protocol

Recovery of muscle function after deep neuromuscular block by means of diaphragm ultrasonography and adductor of pollicis acceleromyography with comparison of neostigmine vs. sugammadex as reversal drugs: study protocol for a randomized controlled trial

Authors: Iacopo Cappellini, Fabio Picciafuochi, Daniele Ostento, Ginevra Danti, Angelo Raffaele De Gaudio, Chiara Adembri

Published in: Trials | Issue 1/2018

Login to get access

Abstract

Background

The extensive use of neuromuscular blocking agents (NMBAs) during surgical procedures still leads to potential residual paralyzing effects in the postoperative period. Indeed, neuromuscular monitoring in an intra-operative setting is strongly advocated. Acetylcholinesterase inhibitors can reverse muscle block, but their short half-life may lead to residual curarization in the ward, especially when intermediate or long-acting NMBAs have been administered. Sugammadex is the first selective reversal drug for steroidal NMBAs; it has been shown to give full and rapid recovery of muscle strength, thus minimizing the occurrence of residual curarization. Acceleromyography of the adductor pollicis is the gold standard for detecting residual curarization, but it cannot be carried out on conscious patients. Ultrasonography of diaphragm thickness may reveal residual effects of NMBAs in conscious patients.

Methods/design

This prospective, double-blind, single-center randomized controlled study will enroll patients (of American Society of Anesthesiologists physical status I–II, aged 18–80 years) who will be scheduled to undergo deep neuromuscular block with rocuronium for ear, nose, or throat surgery. The study’s primary objective will be to compare the effects of neostigmine and sugammadex on postoperative residual curarization using two different tools: diaphragm ultrasonography and acceleromyography of the adductor pollicis. Patients will be extubated when the train-of-four ratio is > 0.9. Diaphragm ultrasonography will be used to evaluate the thickening fraction, which is the difference between the end expiratory thickness and the end inspiratory thickness, normalized to the end expiratory thickness. Ultrasonography will be performed before the initiation of general anesthesia, before extubation, and 10 and 30 min after discharging patients from the operating room. The secondary objective will be to compare the incidence of postoperative complications due to residual neuromuscular block between patients who receive neostigmine and those who receive sugammadex.

Discussion

Postoperative residual curarization is a topic of paramount importance, because its occurrence can cause complications and increase the length of stay in hospital and the related costs. Diaphragm ultrasound assessment may become a bedside integrative tool in the neuromuscular monitoring field to detect concealed residual curarization in surgical patients who have received paralyzing agents.

Trial registration

EudraCT, 2013-004787-62. Registered on 18 June 2014, as “Evaluation of muscle function recovery after deep neuromuscular blockade by acceleromyography of the adductor pollicis or diaphragmatic echography: comparison between sugammadex and neostigmine.”
ClinicalTrials.​gov, NCT02698969. Registered on 15 February 2016, as “Recovery of Muscle Function After Deep Neuromuscular Block by Means of Diaphragm Ultrasonography and Adductor Pollicis Acceleromyography: Comparison of Neostigmine vs. Sugammadex as Reversal Drugs.”
Appendix
Available only for authorised users
Literature
1.
go back to reference Viby-Mogensen J. Postoperative residual curarization and evidence-based anesthesia. Br J Anaesth. 2000;84(3):301–3.CrossRefPubMed Viby-Mogensen J. Postoperative residual curarization and evidence-based anesthesia. Br J Anaesth. 2000;84(3):301–3.CrossRefPubMed
2.
go back to reference Naguib M, Kopman AF, Ensor JE. Neuromuscular monitoring and postoperative residual curarisation: a meta-analysis. Br J Anaesth. 2007;98(3):302–16.CrossRefPubMed Naguib M, Kopman AF, Ensor JE. Neuromuscular monitoring and postoperative residual curarisation: a meta-analysis. Br J Anaesth. 2007;98(3):302–16.CrossRefPubMed
3.
go back to reference Samet A, Capron F, Alla F, Meistelman C, Fuchs-Buder T. Single acceleromyographic train-of-four, 100-Hertz tetanus or double-burst stimulation: which test performs better to detect residual paralysis? Anesthesiology. 2005;102(1):51–6.CrossRefPubMed Samet A, Capron F, Alla F, Meistelman C, Fuchs-Buder T. Single acceleromyographic train-of-four, 100-Hertz tetanus or double-burst stimulation: which test performs better to detect residual paralysis? Anesthesiology. 2005;102(1):51–6.CrossRefPubMed
4.
go back to reference Teoh WH, Ledowski T, Current TPS. trends in neuromuscular blockade, management, and monitoring amongst Singaporean anaesthetists. Anesthesiol Res Pract. 2016;2016:7284146.PubMedPubMedCentral Teoh WH, Ledowski T, Current TPS. trends in neuromuscular blockade, management, and monitoring amongst Singaporean anaesthetists. Anesthesiol Res Pract. 2016;2016:7284146.PubMedPubMedCentral
5.
go back to reference Phillips S, Stewart P, Bilgin A. A survey of the management of neuromuscular blockade monitoring in Australia and New Zealand. Anaesthesia Intens Care. 2013;41:374–9. Phillips S, Stewart P, Bilgin A. A survey of the management of neuromuscular blockade monitoring in Australia and New Zealand. Anaesthesia Intens Care. 2013;41:374–9.
6.
go back to reference Aytac I, Postaci A, Aytac B, Sacan O, Alay GH, Celik B, et al. Survey of postoperative residual curarization, acute respiratory events and approach of anesthesiologists. Rev Bras Anestesiol. 2016;66(1):55–62.CrossRef Aytac I, Postaci A, Aytac B, Sacan O, Alay GH, Celik B, et al. Survey of postoperative residual curarization, acute respiratory events and approach of anesthesiologists. Rev Bras Anestesiol. 2016;66(1):55–62.CrossRef
7.
go back to reference Magorian TT, Lynam DP, Caldwell JE, Miller RD. Can early administration of neostigmine, in single or repeated doses, alter the course of neuromuscular recovery from a vecuronium-induced neuromuscular blockade? Anesthesiology. 1990;73:410–4.CrossRefPubMed Magorian TT, Lynam DP, Caldwell JE, Miller RD. Can early administration of neostigmine, in single or repeated doses, alter the course of neuromuscular recovery from a vecuronium-induced neuromuscular blockade? Anesthesiology. 1990;73:410–4.CrossRefPubMed
8.
go back to reference Della Rocca G, Pompei L, de Paganis CP, Tesoro S, Mendola C, Boninsegni P, et al. Reversal of rocuronium induced neuromuscular block with sugammadex or neostigmine: a large observational study. Acta Anaesthesiol Scand. 2013;57(9):1138–45.CrossRefPubMed Della Rocca G, Pompei L, de Paganis CP, Tesoro S, Mendola C, Boninsegni P, et al. Reversal of rocuronium induced neuromuscular block with sugammadex or neostigmine: a large observational study. Acta Anaesthesiol Scand. 2013;57(9):1138–45.CrossRefPubMed
9.
go back to reference Eikermann M, Fassbender P, Malhotra A, Takahashi M, Kubo S, Jordan AS, et al. Unwarranted administration of acetylcholinesterase inhibitors can impair genioglossus and diaphragm muscle function. Anesthesiology. 2007;107(4):621–9.CrossRefPubMedPubMedCentral Eikermann M, Fassbender P, Malhotra A, Takahashi M, Kubo S, Jordan AS, et al. Unwarranted administration of acetylcholinesterase inhibitors can impair genioglossus and diaphragm muscle function. Anesthesiology. 2007;107(4):621–9.CrossRefPubMedPubMedCentral
10.
go back to reference Flockton EA, Mastronardi P, Hunter JM, Gomar C, Mirakhur RK, Aguilera L, et al. Reversal of rocuronium-induced neuromuscular block with sugammadex is faster than reversal of cisatracurium-induced block with neostigmine. Br J Anaesth. 2008;100(5):622–30.CrossRefPubMed Flockton EA, Mastronardi P, Hunter JM, Gomar C, Mirakhur RK, Aguilera L, et al. Reversal of rocuronium-induced neuromuscular block with sugammadex is faster than reversal of cisatracurium-induced block with neostigmine. Br J Anaesth. 2008;100(5):622–30.CrossRefPubMed
11.
go back to reference Berdah SV, Picaud R, Jammes Y. Surface diaphragmatic electromyogram changes after laparotomy. Clin Physiol Funct Imaging. 2002;22(2):157–60.CrossRefPubMed Berdah SV, Picaud R, Jammes Y. Surface diaphragmatic electromyogram changes after laparotomy. Clin Physiol Funct Imaging. 2002;22(2):157–60.CrossRefPubMed
12.
go back to reference Mead J, Loring SH. Analysis of volume displacement and length changes of the diaphragm during breathing. J Appl Physiol. 1982;53(3):750–5.CrossRefPubMed Mead J, Loring SH. Analysis of volume displacement and length changes of the diaphragm during breathing. J Appl Physiol. 1982;53(3):750–5.CrossRefPubMed
13.
go back to reference Ford GT, Whitelaw WA, Rosenal TW, Cruse PJ, Diaphragm GCA. function after upper abdominal surgery in humans. Am Rev Respir Dis. 1983;127(4):431–6.CrossRefPubMed Ford GT, Whitelaw WA, Rosenal TW, Cruse PJ, Diaphragm GCA. function after upper abdominal surgery in humans. Am Rev Respir Dis. 1983;127(4):431–6.CrossRefPubMed
14.
go back to reference Nguyen-Huu T, Molgó J, Servent D, Duvaldestin P. Resistance to D-tubocurarine of the rat diaphragm as compared to a limb muscle: influence of quantal transmitter release and nicotinic acetylcholine receptors. Anesthesiology. 2009;110(5):1011–5.CrossRefPubMed Nguyen-Huu T, Molgó J, Servent D, Duvaldestin P. Resistance to D-tubocurarine of the rat diaphragm as compared to a limb muscle: influence of quantal transmitter release and nicotinic acetylcholine receptors. Anesthesiology. 2009;110(5):1011–5.CrossRefPubMed
15.
go back to reference Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.CrossRefPubMed Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.CrossRefPubMed
16.
go back to reference Cho H, Kim S, Jung S, Kim S, Ma J, Yu D, et al. Effects of lower tidal volume on ventilator-induced diaphragmatic dysfunction. J Lung Pulm Respir Res. 2017;4:1–7. Cho H, Kim S, Jung S, Kim S, Ma J, Yu D, et al. Effects of lower tidal volume on ventilator-induced diaphragmatic dysfunction. J Lung Pulm Respir Res. 2017;4:1–7.
17.
go back to reference Fried AM, Cosgrove DO, Nassiri DK, McCready VR. The diaphragmatic echo complex: an invitro study. Investig Radiol. 1985;20(1):62–7.CrossRef Fried AM, Cosgrove DO, Nassiri DK, McCready VR. The diaphragmatic echo complex: an invitro study. Investig Radiol. 1985;20(1):62–7.CrossRef
18.
go back to reference Vivier E, Mekontso Dessap A, Dimassi S, Vargas F, Lyazidi A, Thille AW, et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med. 2012;38(5):796–803.CrossRefPubMed Vivier E, Mekontso Dessap A, Dimassi S, Vargas F, Lyazidi A, Thille AW, et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med. 2012;38(5):796–803.CrossRefPubMed
19.
go back to reference Kirkegaard-Nielsen H, Helbo-Hansen HS, Lindholm P, Severinsen IK, Time BK. to peak effect of neostigmine at antagonism of atracurium- or vecuronium-induced neuromuscular block. J Clin Anesth. 1995;7(8):635–9.CrossRefPubMed Kirkegaard-Nielsen H, Helbo-Hansen HS, Lindholm P, Severinsen IK, Time BK. to peak effect of neostigmine at antagonism of atracurium- or vecuronium-induced neuromuscular block. J Clin Anesth. 1995;7(8):635–9.CrossRefPubMed
20.
go back to reference Zhang B, Hepner D, Tran MH, Friedman M, Korn JR, Neuromuscular MJ. blockade, reversal agent use, and operating room time: retrospective analysis of US inpatient surgeries. Curr Med Res Opin. 2009;25(4):943–50.CrossRefPubMed Zhang B, Hepner D, Tran MH, Friedman M, Korn JR, Neuromuscular MJ. blockade, reversal agent use, and operating room time: retrospective analysis of US inpatient surgeries. Curr Med Res Opin. 2009;25(4):943–50.CrossRefPubMed
21.
go back to reference JA BB. Predictors of postoperative pulmonary complications following abdominal surgery. Chest. 1997;111(3):564–71.CrossRef JA BB. Predictors of postoperative pulmonary complications following abdominal surgery. Chest. 1997;111(3):564–71.CrossRef
22.
go back to reference Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41(4):642–9.CrossRefPubMed Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41(4):642–9.CrossRefPubMed
23.
go back to reference Green MS, Venkatesh AG, Venkataramani R. Management of residual neuromuscular blockade recovery: age-old problem with a new solution. Case Rep Anesthesiol. 2017;2017:8197035.PubMedPubMedCentral Green MS, Venkatesh AG, Venkataramani R. Management of residual neuromuscular blockade recovery: age-old problem with a new solution. Case Rep Anesthesiol. 2017;2017:8197035.PubMedPubMedCentral
24.
go back to reference Kim WY, Suh HJ, Hong S-B, Koh Y, Lim C-M. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med. 2011;39(12):2627–30.CrossRefPubMed Kim WY, Suh HJ, Hong S-B, Koh Y, Lim C-M. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med. 2011;39(12):2627–30.CrossRefPubMed
25.
go back to reference Grosu HB, Lee YI, Lee J, Eden E, Eikermann M, Rose KM. Diaphragm muscle thinning in patients who are mechanically ventilated. Chest. 2012;142(6):1455–60.CrossRefPubMed Grosu HB, Lee YI, Lee J, Eden E, Eikermann M, Rose KM. Diaphragm muscle thinning in patients who are mechanically ventilated. Chest. 2012;142(6):1455–60.CrossRefPubMed
26.
go back to reference DiNino E, Gartman EJ, Sethi JM, McCool FD. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax. 2013;69:1–5. DiNino E, Gartman EJ, Sethi JM, McCool FD. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax. 2013;69:1–5.
27.
go back to reference Adam JM, Bennett DJ, Bom A, Clark JK, Feilden H, Hutchinson EJ, et al. Cyclodextrin-derived host molecules as reversal agents for the neuromuscular blocker rocuronium bromide: synthesis and structure-activity relationships. J Med Chem. 2002;45(9):1806–16.CrossRefPubMed Adam JM, Bennett DJ, Bom A, Clark JK, Feilden H, Hutchinson EJ, et al. Cyclodextrin-derived host molecules as reversal agents for the neuromuscular blocker rocuronium bromide: synthesis and structure-activity relationships. J Med Chem. 2002;45(9):1806–16.CrossRefPubMed
Metadata
Title
Recovery of muscle function after deep neuromuscular block by means of diaphragm ultrasonography and adductor of pollicis acceleromyography with comparison of neostigmine vs. sugammadex as reversal drugs: study protocol for a randomized controlled trial
Authors
Iacopo Cappellini
Fabio Picciafuochi
Daniele Ostento
Ginevra Danti
Angelo Raffaele De Gaudio
Chiara Adembri
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Trials / Issue 1/2018
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-018-2525-7

Other articles of this Issue 1/2018

Trials 1/2018 Go to the issue