Skip to main content
Top
Published in: Trials 1/2017

Open Access 01-12-2017 | Study protocol

Metformin to Augment Strength Training Effective Response in Seniors (MASTERS): study protocol for a randomized controlled trial

Authors: Doug E. Long, Bailey D. Peck, Jenny L. Martz, S. Craig Tuggle, Heather M. Bush, Gerald McGwin, Philip A. Kern, Marcas M. Bamman, Charlotte A. Peterson

Published in: Trials | Issue 1/2017

Login to get access

Abstract

Background

Muscle mass and strength are strong determinants of a person’s quality of life and functional independence with advancing age. While resistance training is the most effective intervention to combat age-associated muscle atrophy (sarcopenia), the ability of older adults to increase muscle mass and strength in response to training is blunted and highly variable. Thus, finding novel ways to complement resistance training to improve muscle response and ultimately quality of life among older individuals is critical. The purpose of this study is to determine whether a commonly prescribed medication called metformin can be repurposed to improve the response to resistance exercise training by altering the muscle tissue inflammatory environment.

Methods/design

Individuals aged 65 and older are participating in a two-site, randomized, double-blind, placebo-controlled trial testing the effects of metformin or placebo on muscle size, strength, and physical function when combined with a progressive resistance training program. Participants consume 1700 mg of metformin per day or placebo for 2 weeks before engaging in a 14-week progressive resistance training regimen, with continued metformin or placebo. Participants are then monitored post-training to determine if the group taking metformin derived greater overall benefit from training in terms of muscle mass and strength gains than those on placebo. Muscle biopsies are taken from the vastus lateralis at three time points to assess individual cellular and molecular adaptations to resistance training and also changes in response to metformin.

Discussion

The response of aged muscles to a resistance training program does not always result in a positive outcome; some individuals even experience a loss in muscle mass following resistance training. Thus, adjuvant therapies, including pharmacological ones, are required to optimize response to training in those who do not respond and may be at increased risk of frailty. This is the first known metformin repurposing trial in non-diseased individuals, aimed specifically at the resistance exercise “non-responder” phenotype present in the aging population. The overall goal of this trial is to determine if combined exercise-metformin intervention therapy will benefit older individuals by promoting muscle hypertrophy and strength gains, thereby maintaining functional independence.

Trial registration

ClinicalTrials.gov, NCT02308228. Registered on 25 November 2014.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260.CrossRefPubMedPubMedCentral Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260.CrossRefPubMedPubMedCentral
2.
go back to reference de Labra C, Guimaraes-Pinheiro C, Maseda A, Lorenzo T, Millán-Calenti JC. Effects of physical exercise interventions in frail older adults: a systematic review of randomized controlled trials. BMC Geriatr. 2015;15:154.CrossRefPubMedPubMedCentral de Labra C, Guimaraes-Pinheiro C, Maseda A, Lorenzo T, Millán-Calenti JC. Effects of physical exercise interventions in frail older adults: a systematic review of randomized controlled trials. BMC Geriatr. 2015;15:154.CrossRefPubMedPubMedCentral
3.
go back to reference Lustosa LP, Silva JP, Coelho FM, Pereira DS, Parentoni AN, Pereira LSM. Impact of resistance exercise program on functional capacity and muscular strength of knee extensor in pre-frail community-dwelling older women: a randomized crossover trial. / Efeito de um programa de resistência muscular na capacidade funcional e na força muscular dos extensores do joelho em idosas pré-frágeis da comunidade: ensaio clínico aleatorizado do tipo crossover. Braz J Phys Ther / Rev Bras Fisioter. 2011;15:318–24.CrossRef Lustosa LP, Silva JP, Coelho FM, Pereira DS, Parentoni AN, Pereira LSM. Impact of resistance exercise program on functional capacity and muscular strength of knee extensor in pre-frail community-dwelling older women: a randomized crossover trial. / Efeito de um programa de resistência muscular na capacidade funcional e na força muscular dos extensores do joelho em idosas pré-frágeis da comunidade: ensaio clínico aleatorizado do tipo crossover. Braz J Phys Ther / Rev Bras Fisioter. 2011;15:318–24.CrossRef
4.
go back to reference Bamman MM, Petrella JK, Jeong-su K, Mayhew DL, Cross JM. Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol. 2007;102:2232–9.CrossRefPubMed Bamman MM, Petrella JK, Jeong-su K, Mayhew DL, Cross JM. Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol. 2007;102:2232–9.CrossRefPubMed
5.
go back to reference Dennis RA, Przybyla B, Gurley C, et al. Aging alters gene expression of growth and remodeling factors in human skeletal muscle both at rest and in response to acute resistance exercise. Physiol Genomics. 2008;32:393–400.CrossRefPubMed Dennis RA, Przybyla B, Gurley C, et al. Aging alters gene expression of growth and remodeling factors in human skeletal muscle both at rest and in response to acute resistance exercise. Physiol Genomics. 2008;32:393–400.CrossRefPubMed
6.
go back to reference Merritt EK, Stec MJ, Thalacker-Mercer A, et al. Heightened muscle inflammation susceptibility may impair regenerative capacity in aging humans. J Appl Physiol. 2013;115:937–48.CrossRefPubMedPubMedCentral Merritt EK, Stec MJ, Thalacker-Mercer A, et al. Heightened muscle inflammation susceptibility may impair regenerative capacity in aging humans. J Appl Physiol. 2013;115:937–48.CrossRefPubMedPubMedCentral
7.
go back to reference Petrella JK, Jeong-su K, Mayhew DL, Cross JM, Marcas MB. Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol. 2008;104:1736–42.CrossRefPubMed Petrella JK, Jeong-su K, Mayhew DL, Cross JM, Marcas MB. Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol. 2008;104:1736–42.CrossRefPubMed
8.
go back to reference Dennis RA, Zhu H, Kortebein PM, et al. Muscle expression of genes associated with inflammation, growth, and remodeling is strongly correlated in older adults with resistance training outcomes. Physiol Genomics. 2009;38:169–75.CrossRefPubMedPubMedCentral Dennis RA, Zhu H, Kortebein PM, et al. Muscle expression of genes associated with inflammation, growth, and remodeling is strongly correlated in older adults with resistance training outcomes. Physiol Genomics. 2009;38:169–75.CrossRefPubMedPubMedCentral
9.
go back to reference Fisher G, Bickel CS, Hunter GR. Elevated Circulating TNF-α in Fat-Free Mass Non-Responders Compared to Responders Following Exercise Training in Older Women. Biology. 2014;3:551–9.CrossRefPubMedPubMedCentral Fisher G, Bickel CS, Hunter GR. Elevated Circulating TNF-α in Fat-Free Mass Non-Responders Compared to Responders Following Exercise Training in Older Women. Biology. 2014;3:551–9.CrossRefPubMedPubMedCentral
10.
go back to reference Przybyla B, Gurley C, Harvey JF, et al. Aging alters macrophage properties in human skeletal muscle both at rest and in response to acute resistance exercise. Exp Gerontol. 2006;41:320–7.CrossRefPubMed Przybyla B, Gurley C, Harvey JF, et al. Aging alters macrophage properties in human skeletal muscle both at rest and in response to acute resistance exercise. Exp Gerontol. 2006;41:320–7.CrossRefPubMed
11.
go back to reference Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204:1057–69.CrossRefPubMedPubMedCentral Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204:1057–69.CrossRefPubMedPubMedCentral
12.
go back to reference Robertson TA, Maley MA, Grounds MD, Papadimitriou JM. The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp Cell Res. 1993;207:321–31.CrossRefPubMed Robertson TA, Maley MA, Grounds MD, Papadimitriou JM. The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp Cell Res. 1993;207:321–31.CrossRefPubMed
13.
go back to reference Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol. 2007;578:327–36.CrossRefPubMed Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol. 2007;578:327–36.CrossRefPubMed
14.
go back to reference Paylor B, Natarajan A, Zhang RH, Rossi F. Nonmyogenic cells in skeletal muscle regeneration. Curr Top Dev Biol. 2011;96:139–65.CrossRefPubMed Paylor B, Natarajan A, Zhang RH, Rossi F. Nonmyogenic cells in skeletal muscle regeneration. Curr Top Dev Biol. 2011;96:139–65.CrossRefPubMed
15.
go back to reference Dumont N, Frenette J. Macrophages protect against muscle atrophy and promote muscle recovery in vivo and in vitro: a mechanism partly dependent on the insulin-like growth factor-1 signaling molecule. Am J Pathol. 2010;176:2228–35.CrossRefPubMedPubMedCentral Dumont N, Frenette J. Macrophages protect against muscle atrophy and promote muscle recovery in vivo and in vitro: a mechanism partly dependent on the insulin-like growth factor-1 signaling molecule. Am J Pathol. 2010;176:2228–35.CrossRefPubMedPubMedCentral
16.
go back to reference Cantini M, Giurisato E, Radu C, et al. Macrophage-secreted myogenic factors: a promising tool for greatly enhancing the proliferative capacity of myoblasts in vitro and in vivo. Neurol Sci. 2002;23:189–94.CrossRefPubMed Cantini M, Giurisato E, Radu C, et al. Macrophage-secreted myogenic factors: a promising tool for greatly enhancing the proliferative capacity of myoblasts in vitro and in vivo. Neurol Sci. 2002;23:189–94.CrossRefPubMed
17.
go back to reference Chazaud B, Sonnet C, Lafuste P, et al. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol. 2003;163:1133–43.CrossRefPubMedPubMedCentral Chazaud B, Sonnet C, Lafuste P, et al. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol. 2003;163:1133–43.CrossRefPubMedPubMedCentral
18.
go back to reference Check HE. Anti-ageing pill pushed as bona fide drug. Nature. 2015;522:265–6.CrossRef Check HE. Anti-ageing pill pushed as bona fide drug. Nature. 2015;522:265–6.CrossRef
19.
go back to reference Bannister CA, Holden SE, Jenkins-Jones S, et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab. 2014;16:1165–73.CrossRefPubMed Bannister CA, Holden SE, Jenkins-Jones S, et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab. 2014;16:1165–73.CrossRefPubMed
20.
go back to reference Kim YD, Park K-G, Lee Y-S, et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes. 2008;57:306–14.CrossRefPubMed Kim YD, Park K-G, Lee Y-S, et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes. 2008;57:306–14.CrossRefPubMed
21.
23.
go back to reference Mounier R, Théret M, Lantier L, Foretz M, Viollet B. Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol Metab. 2015;26:275–86.CrossRefPubMed Mounier R, Théret M, Lantier L, Foretz M, Viollet B. Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol Metab. 2015;26:275–86.CrossRefPubMed
24.
go back to reference Mounier R, Théret M, Arnold L, et al. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 2013;18:251–64.CrossRefPubMed Mounier R, Théret M, Arnold L, et al. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 2013;18:251–64.CrossRefPubMed
25.
go back to reference Kim J, Kwak HJ, Cha J-Y, et al. Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction. J Biol Chem. 2014;289:23246–55.CrossRefPubMedPubMedCentral Kim J, Kwak HJ, Cha J-Y, et al. Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction. J Biol Chem. 2014;289:23246–55.CrossRefPubMedPubMedCentral
26.
go back to reference Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–94.CrossRefPubMed Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–94.CrossRefPubMed
27.
go back to reference Blanton CA, Moshfegh AJ, Baer DJ, Kretsch MJ. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J Nutr. 2006;136:2594–9.PubMed Blanton CA, Moshfegh AJ, Baer DJ, Kretsch MJ. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J Nutr. 2006;136:2594–9.PubMed
28.
go back to reference Bickel CS, Cross JM, Bamman MM. Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sports Exerc. 2011;43:1177–87.CrossRefPubMed Bickel CS, Cross JM, Bamman MM. Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sports Exerc. 2011;43:1177–87.CrossRefPubMed
29.
go back to reference Bamman MM, Clarke MSF, Feeback DL, et al. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J Appl Physiol. 1998;84:157–63.PubMed Bamman MM, Clarke MSF, Feeback DL, et al. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J Appl Physiol. 1998;84:157–63.PubMed
30.
go back to reference Petrella JK, Jeong-su K, Tuggle SC, Hall SR, Bamman MM. Age differences in knee extension power, contractile velocity, and fatigability. J Appl Physiol. 2005;98:211–20.CrossRefPubMed Petrella JK, Jeong-su K, Tuggle SC, Hall SR, Bamman MM. Age differences in knee extension power, contractile velocity, and fatigability. J Appl Physiol. 2005;98:211–20.CrossRefPubMed
31.
go back to reference Srikuea R, Symons TB, Long DE, et al. Association of fibromyalgia with altered skeletal muscle characteristics which may contribute to postexertional fatigue in postmenopausal women. Arthritis Rheum. 2013;65:519–28.CrossRefPubMedPubMedCentral Srikuea R, Symons TB, Long DE, et al. Association of fibromyalgia with altered skeletal muscle characteristics which may contribute to postexertional fatigue in postmenopausal women. Arthritis Rheum. 2013;65:519–28.CrossRefPubMedPubMedCentral
32.
go back to reference Matsuda M, Liu Y, Mahankali S, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48:1801–6.CrossRefPubMed Matsuda M, Liu Y, Mahankali S, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48:1801–6.CrossRefPubMed
33.
go back to reference Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 2007;100:328–41.CrossRefPubMed Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 2007;100:328–41.CrossRefPubMed
34.
go back to reference Jahnke VE, Van Der Meulen JH, Johnston HK, et al. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model. Skelet Muscle. 2012;2:16–26.CrossRefPubMedPubMedCentral Jahnke VE, Van Der Meulen JH, Johnston HK, et al. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model. Skelet Muscle. 2012;2:16–26.CrossRefPubMedPubMedCentral
35.
go back to reference Langone F, Cannata S, Fuoco C, et al. Metformin protects skeletal muscle from cardiotoxin induced degeneration. PLoS One. 2014;9:1–19.CrossRef Langone F, Cannata S, Fuoco C, et al. Metformin protects skeletal muscle from cardiotoxin induced degeneration. PLoS One. 2014;9:1–19.CrossRef
36.
go back to reference Lantier L, Fentz J, Mounier R, et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 2014;28:3211–24.CrossRefPubMed Lantier L, Fentz J, Mounier R, et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 2014;28:3211–24.CrossRefPubMed
37.
go back to reference Foretz M, Hébrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120:2355–69.CrossRefPubMedPubMedCentral Foretz M, Hébrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120:2355–69.CrossRefPubMedPubMedCentral
38.
go back to reference Kristensen JM, Larsen S, Helge JW, Dela F, Wojtaszewski JFP. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice. PLoS One. 2013;8:e53533.CrossRefPubMedPubMedCentral Kristensen JM, Larsen S, Helge JW, Dela F, Wojtaszewski JFP. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice. PLoS One. 2013;8:e53533.CrossRefPubMedPubMedCentral
39.
go back to reference Anisimov VN. Metformin: do we finally have an anti-aging drug? Cell Cycle (Georgetown, Tex). 2013;12:3483-9. Anisimov VN. Metformin: do we finally have an anti-aging drug? Cell Cycle (Georgetown, Tex). 2013;12:3483-9.
40.
go back to reference Evans JMM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ (Clinical Research Ed). 2005;330:1304–5.CrossRef Evans JMM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ (Clinical Research Ed). 2005;330:1304–5.CrossRef
41.
go back to reference Morgan CL, Jenkins-Jones S, Holden SE, Currie CJ, Mukherjee J. Association between first-line monotherapy with sulphonylurea versus metformin and risk of all-cause mortality and cardiovascular events: a retrospective, observational study. Diabetes Obes Metab. 2014;16:957–62.CrossRefPubMed Morgan CL, Jenkins-Jones S, Holden SE, Currie CJ, Mukherjee J. Association between first-line monotherapy with sulphonylurea versus metformin and risk of all-cause mortality and cardiovascular events: a retrospective, observational study. Diabetes Obes Metab. 2014;16:957–62.CrossRefPubMed
42.
go back to reference Roepstorff C, Thiele M, Hillig T, et al. Higher skeletal muscle α2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J Physiol. 2006;574:125–38.CrossRefPubMedPubMedCentral Roepstorff C, Thiele M, Hillig T, et al. Higher skeletal muscle α2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J Physiol. 2006;574:125–38.CrossRefPubMedPubMedCentral
43.
go back to reference Reznick RM, Zong H, Li J, et al. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007;5:151–6.CrossRefPubMedPubMedCentral Reznick RM, Zong H, Li J, et al. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007;5:151–6.CrossRefPubMedPubMedCentral
Metadata
Title
Metformin to Augment Strength Training Effective Response in Seniors (MASTERS): study protocol for a randomized controlled trial
Authors
Doug E. Long
Bailey D. Peck
Jenny L. Martz
S. Craig Tuggle
Heather M. Bush
Gerald McGwin
Philip A. Kern
Marcas M. Bamman
Charlotte A. Peterson
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Trials / Issue 1/2017
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-017-1932-5

Other articles of this Issue 1/2017

Trials 1/2017 Go to the issue