Skip to main content
Top
Published in: Trials 1/2016

Open Access 01-12-2016 | Study protocol

The RAPID-CTCA trial (Rapid Assessment of Potential Ischaemic Heart Disease with CTCA) — a multicentre parallel-group randomised trial to compare early computerised tomography coronary angiography versus standard care in patients presenting with suspected or confirmed acute coronary syndrome: study protocol for a randomised controlled trial

Authors: Alasdair J. Gray, Carl Roobottom, Jason E. Smith, Steve Goodacre, Katherine Oatey, Rachel O’Brien, Robert F. Storey, Lumine Na, Steff C. Lewis, Praveen Thokala, David E. Newby

Published in: Trials | Issue 1/2016

Login to get access

Abstract

Background

Emergency department attendances with chest pain requiring assessment for acute coronary syndrome (ACS) are a major global health issue. Standard assessment includes history, examination, electrocardiogram (ECG) and serial troponin testing. Computerised tomography coronary angiography (CTCA) enables additional anatomical assessment of patients for coronary artery disease (CAD) but has only been studied in very low-risk patients. This trial aims to investigate the effect of early CTCA upon interventions, event rates and health care costs in patients with suspected/confirmed ACS who are at intermediate risk.

Methods/design

Participants will be recruited in about 35 tertiary and district general hospitals in the UK. Patients ≥18 years old with symptoms with suspected/confirmed ACS with at least one of the following will be included: (1) ECG abnormalities, e.g. ST-segment depression >0.5 mm; (2) history of ischaemic heart disease; (3) troponin elevation above the 99th centile of the normal reference range or increase in high-sensitivity troponin meeting European Society of Cardiology criteria for ‘rule-in’ of myocardial infarction (MI). The early use of ≥64-slice CTCA as part of routine assessment will be compared to standard care. The primary endpoint will be 1-year all-cause death or recurrent type 1 or type 4b MI at 1 year, measured as the time to such event. A number of secondary clinical, process and safety endpoints will be collected and analysed. Cost effectiveness will be estimated in terms of the lifetime incremental cost per quality-adjusted life year gained. We plan to recruit 2424 (2500 with ~3% drop-out) evaluable patients (1212 per arm) to have 90% power to detect a 20% versus 15% difference in 1-year death or recurrent type 1 MI or type 4b MI, two-sided p < 0.05. Analysis will be on an intention-to-treat basis. The relationship between intervention and the primary outcome will be analysed using Cox proportional hazard regression adjusted for study site (used to stratify the randomisation), age, baseline Global Registry of Acute Coronary Events score, previous CAD and baseline troponin level. The results will be expressed as a hazard ratio with the corresponding 95% confidence intervals and p value.

Discussion

The Rapid Assessment of Potential Ischaemic Heart Disease with CTCA (RAPID-CTCA) trial will recruit 2500 participants across about 35 hospital sites. It will be the first study to investigate the role of CTCA in the early assessment of patients with suspected or confirmed ACS who are at intermediate risk and including patients who have raised troponin measurements during initial assessment.

Trial registration

ISRCTN19102565. Registered on 3 October 2014. ClinicalTrials.gov: NCT02284191.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pitts SR, Niska RW, Xu J, Burt CW. National Hospital Ambulatory Medical Care Survey: 2006 emergency department summary. Natl Health Stat Rep. 2008;7:1–38. Pitts SR, Niska RW, Xu J, Burt CW. National Hospital Ambulatory Medical Care Survey: 2006 emergency department summary. Natl Health Stat Rep. 2008;7:1–38.
2.
go back to reference Amsterdam EA, Kirk JD, Bluemke DA, Diercks D, Farkouh ME, Garvey JL, on behalf of the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology, Council on Cardiovascular Nursing, and Interdisciplinary Council on Quality of Care and Outcomes Research, et al. Testing of low-risk patients presenting to the emergency department with chest pain: a scientific statement from the American Heart Association. Circulation. 2010;122:1756–76.CrossRefPubMedPubMedCentral Amsterdam EA, Kirk JD, Bluemke DA, Diercks D, Farkouh ME, Garvey JL, on behalf of the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology, Council on Cardiovascular Nursing, and Interdisciplinary Council on Quality of Care and Outcomes Research, et al. Testing of low-risk patients presenting to the emergency department with chest pain: a scientific statement from the American Heart Association. Circulation. 2010;122:1756–76.CrossRefPubMedPubMedCentral
4.
go back to reference Health and Social Care Information Centre (HSCIC). Hospital episode statistics, admitted patient care - England 2011-12: primary diagnosis, 4 characters table [Internet]. Health & Social Care Information Centre (HSCIC), 2012. http://www.hscic.gov.uk/catalogue/PUB08288. Accessed 5 Jan 2014. Health and Social Care Information Centre (HSCIC). Hospital episode statistics, admitted patient care - England 2011-12: primary diagnosis, 4 characters table [Internet]. Health & Social Care Information Centre (HSCIC), 2012. http://​www.​hscic.​gov.​uk/​catalogue/​PUB08288. Accessed 5 Jan 2014.
6.
go back to reference National Institute for Health and Care Excellence. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. NICE clinical guideline 95 [Internet]. London: NICE; 2012. National Institute for Health and Care Excellence. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. NICE clinical guideline 95 [Internet]. London: NICE; 2012.
7.
go back to reference Scottish Intercollegiate Guidelines Network. SIGN 93. Acute coronary syndromes. A national clinical guideline. Edinburgh: SIGN; 2013. Scottish Intercollegiate Guidelines Network. SIGN 93. Acute coronary syndromes. A national clinical guideline. Edinburgh: SIGN; 2013.
8.
go back to reference Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2015;37:267–315.CrossRefPubMed Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2015;37:267–315.CrossRefPubMed
9.
go back to reference Shah AS, Anand A, Sandoval Y, Lee KK, Smith SW, Adamson PD, on behalf of the High-STEACS investigators, et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. Lancet. 2015;386:2481–8.CrossRefPubMedPubMedCentral Shah AS, Anand A, Sandoval Y, Lee KK, Smith SW, Adamson PD, on behalf of the High-STEACS investigators, et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. Lancet. 2015;386:2481–8.CrossRefPubMedPubMedCentral
10.
go back to reference Mills NL, Churchhouse AM, Lee KK, Anand A, Gamble D, Shah AS, et al. Implementation of a sensitive troponin I assay and risk of recurrent myocardial infarction and death in patients with suspected acute coronary syndrome. JAMA. 2011;305:1210–6.CrossRefPubMed Mills NL, Churchhouse AM, Lee KK, Anand A, Gamble D, Shah AS, et al. Implementation of a sensitive troponin I assay and risk of recurrent myocardial infarction and death in patients with suspected acute coronary syndrome. JAMA. 2011;305:1210–6.CrossRefPubMed
11.
12.
go back to reference Shah AS, McAllister DA, Mills R, Lee KK, Churchhouse AM, Fleming KM, Layden E, Anand A, Fersia O, Joshi NV, Walker S, Jaffe AS, Fox KA, Newby DE, Mills NL. Sensitive troponin assay and the classification of myocardial infarction. Am J Med. 2015;128(5):493–501.CrossRefPubMedPubMedCentral Shah AS, McAllister DA, Mills R, Lee KK, Churchhouse AM, Fleming KM, Layden E, Anand A, Fersia O, Joshi NV, Walker S, Jaffe AS, Fox KA, Newby DE, Mills NL. Sensitive troponin assay and the classification of myocardial infarction. Am J Med. 2015;128(5):493–501.CrossRefPubMedPubMedCentral
13.
go back to reference Thygesen K, Alpert JS, Jaffe AS, Simoons MI, Chaitman BR, White HD, the Writing Group on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction. Third Universal Definition of Myocardial Infarction. Circulation. 2012;126:2020–35.CrossRefPubMed Thygesen K, Alpert JS, Jaffe AS, Simoons MI, Chaitman BR, White HD, the Writing Group on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction. Third Universal Definition of Myocardial Infarction. Circulation. 2012;126:2020–35.CrossRefPubMed
14.
go back to reference Dunham M, Challen K, Walter D. Risk stratification of patients with acute chest pain without a rise in troponin: current practice in England. Emerg Med J. 2010;27:461–4.CrossRefPubMed Dunham M, Challen K, Walter D. Risk stratification of patients with acute chest pain without a rise in troponin: current practice in England. Emerg Med J. 2010;27:461–4.CrossRefPubMed
16.
go back to reference Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.CrossRefPubMed Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.CrossRefPubMed
17.
go back to reference Mowatt G, Cummins E, Waugh N, Walker S, Cook J, Jia X, et al. Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess. 2008;12:1–164.CrossRef Mowatt G, Cummins E, Waugh N, Walker S, Cook J, Jia X, et al. Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess. 2008;12:1–164.CrossRef
18.
go back to reference Goodacre S, Thokala P, Carroll C, Stevens JW, Leaviss J, Al Khalaf M, et al. Systematic review, meta-analysis and economic modelling of diagnostic strategies for suspected acute coronary syndrome. Health Technol Assess. 2013:17(1). doi: 10.3310/hta17010. Goodacre S, Thokala P, Carroll C, Stevens JW, Leaviss J, Al Khalaf M, et al. Systematic review, meta-analysis and economic modelling of diagnostic strategies for suspected acute coronary syndrome. Health Technol Assess. 2013:17(1). doi: 10.​3310/​hta17010.
19.
go back to reference Goldstein JA, Chinnaiyan KM, Abidov A, Achenbach S, Berman DS, Hayes SW, CT-STAT Investigators, et al. The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) trial. J Am Coll Cardiol. 2011;58(14):1414–22.CrossRefPubMed Goldstein JA, Chinnaiyan KM, Abidov A, Achenbach S, Berman DS, Hayes SW, CT-STAT Investigators, et al. The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) trial. J Am Coll Cardiol. 2011;58(14):1414–22.CrossRefPubMed
20.
go back to reference Hoffmann U, Truong QA, Schoenfeld DA, Chou ET, Woodard PK, Nagurney JT, ROMICAT-II Investigators, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;67:299–308.CrossRef Hoffmann U, Truong QA, Schoenfeld DA, Chou ET, Woodard PK, Nagurney JT, ROMICAT-II Investigators, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;67:299–308.CrossRef
21.
go back to reference Litt H, Gatsonis C, Snyder B, Singh H, Miller C, Entrikin D, et al. Angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366:1393–403.CrossRefPubMed Litt H, Gatsonis C, Snyder B, Singh H, Miller C, Entrikin D, et al. Angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366:1393–403.CrossRefPubMed
22.
go back to reference D’Ascenzo F, Cerrato E, Biondi-Zoccai G, Omedè P, Sciuto F, Presutti DG, et al. Coronary computed tomographic angiography for detection of coronary artery disease in patients presenting to the emergency department with chest pain: a meta-analysis of randomized clinical trials. Eur Heart J Cardiovasc Imaging. 2012;14:782–9.CrossRefPubMed D’Ascenzo F, Cerrato E, Biondi-Zoccai G, Omedè P, Sciuto F, Presutti DG, et al. Coronary computed tomographic angiography for detection of coronary artery disease in patients presenting to the emergency department with chest pain: a meta-analysis of randomized clinical trials. Eur Heart J Cardiovasc Imaging. 2012;14:782–9.CrossRefPubMed
23.
go back to reference Hulten E, Pickett C, Bittencourt MS, Villines TC, Petrillo S, Di Carli MF, et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J Am Coll Cardiol. 2013;61:880–92.CrossRefPubMed Hulten E, Pickett C, Bittencourt MS, Villines TC, Petrillo S, Di Carli MF, et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J Am Coll Cardiol. 2013;61:880–92.CrossRefPubMed
24.
go back to reference Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, for the PROMISE Investigators, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291–300.CrossRefPubMedPubMedCentral Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, for the PROMISE Investigators, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291–300.CrossRefPubMedPubMedCentral
25.
go back to reference McKavanagh P, Lusk L, Ball PA, Verghis RM, Agus AM, Trinick TR, et al. A comparison of cardiac computerized tomography and exercise stress electrocardiogram test for the investigation of stable chest pain: the clinical results of the CAPP randomized prospective trial. Eur Heart J Cardiovasc Imaging. 2015;16:441–8.CrossRefPubMed McKavanagh P, Lusk L, Ball PA, Verghis RM, Agus AM, Trinick TR, et al. A comparison of cardiac computerized tomography and exercise stress electrocardiogram test for the investigation of stable chest pain: the clinical results of the CAPP randomized prospective trial. Eur Heart J Cardiovasc Imaging. 2015;16:441–8.CrossRefPubMed
26.
go back to reference Newby DE, The SCOT-HEART Investigators, et al. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385:2383–91.CrossRef Newby DE, The SCOT-HEART Investigators, et al. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385:2383–91.CrossRef
27.
go back to reference Linde JJ, Kofoed KF, Sørgaard M, Kelbæk H, Jensen GB, Nielsen WB, et al. Cardiac computed tomography guided treatment strategy in patients with recent acute-onset chest pain: results from the randomised, controlled trial: CArdiac cT in the treatment of acute CHest pain (CATCH). Int J Cardiol. 2013;168(6):5257–62.CrossRefPubMed Linde JJ, Kofoed KF, Sørgaard M, Kelbæk H, Jensen GB, Nielsen WB, et al. Cardiac computed tomography guided treatment strategy in patients with recent acute-onset chest pain: results from the randomised, controlled trial: CArdiac cT in the treatment of acute CHest pain (CATCH). Int J Cardiol. 2013;168(6):5257–62.CrossRefPubMed
28.
go back to reference Linde JJ, Hove JD, Sørgaard M, Kelbæk H, Jensen GB, Kühl JT, et al. Long-term clinical impact of coronary CT angiography in patients with recent acute-onset chest pain: the randomized controlled CATCH trial. J Am Coll Cardiol Img. 2015;8(12):1404–13.CrossRef Linde JJ, Hove JD, Sørgaard M, Kelbæk H, Jensen GB, Kühl JT, et al. Long-term clinical impact of coronary CT angiography in patients with recent acute-onset chest pain: the randomized controlled CATCH trial. J Am Coll Cardiol Img. 2015;8(12):1404–13.CrossRef
29.
go back to reference Dedic A, Lubbers MM, Schaap J, Lammers J, Lamfers EJ, Rensing BJ, et al. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins. Randomized multicenter study. J Am Coll Cardiol. 2016;67(1):16–26.CrossRefPubMed Dedic A, Lubbers MM, Schaap J, Lammers J, Lamfers EJ, Rensing BJ, et al. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins. Randomized multicenter study. J Am Coll Cardiol. 2016;67(1):16–26.CrossRefPubMed
30.
31.
go back to reference Goodacre S, Bradburn M, Fitzgerald P, Cross E, Collinson P, Gray A, et al. The RATPAC (Randomised Assessment of Treatment using Panel Assay of Cardiac markers) trial: a randomised controlled trial of point-of-care cardiac markers in the emergency department. Health Technol Assess. 2011;15(23):1–108.CrossRefPubMedPubMedCentral Goodacre S, Bradburn M, Fitzgerald P, Cross E, Collinson P, Gray A, et al. The RATPAC (Randomised Assessment of Treatment using Panel Assay of Cardiac markers) trial: a randomised controlled trial of point-of-care cardiac markers in the emergency department. Health Technol Assess. 2011;15(23):1–108.CrossRefPubMedPubMedCentral
32.
go back to reference Body R, Carley S, McDowell G, Jaffe AS, France M, Cruickshank K, Wibberley C, Nuttall M, Mackway-Jones K. Rapid exclusion of acute myocardial infarction in patients with undetectable troponin using a high-sensitivity assay. J Am Coll Cardiol. 2011;58(13):1332–9.CrossRefPubMed Body R, Carley S, McDowell G, Jaffe AS, France M, Cruickshank K, Wibberley C, Nuttall M, Mackway-Jones K. Rapid exclusion of acute myocardial infarction in patients with undetectable troponin using a high-sensitivity assay. J Am Coll Cardiol. 2011;58(13):1332–9.CrossRefPubMed
33.
go back to reference Thokala P, Goodacre SW, Collinson P, Stevens JW, Mills NL, Newby DE, et al. Cost-effectiveness of presentation and delayed troponin testing for acute myocardial infarction. Heart. 2012;98:1498–503.CrossRefPubMed Thokala P, Goodacre SW, Collinson P, Stevens JW, Mills NL, Newby DE, et al. Cost-effectiveness of presentation and delayed troponin testing for acute myocardial infarction. Heart. 2012;98:1498–503.CrossRefPubMed
Metadata
Title
The RAPID-CTCA trial (Rapid Assessment of Potential Ischaemic Heart Disease with CTCA) — a multicentre parallel-group randomised trial to compare early computerised tomography coronary angiography versus standard care in patients presenting with suspected or confirmed acute coronary syndrome: study protocol for a randomised controlled trial
Authors
Alasdair J. Gray
Carl Roobottom
Jason E. Smith
Steve Goodacre
Katherine Oatey
Rachel O’Brien
Robert F. Storey
Lumine Na
Steff C. Lewis
Praveen Thokala
David E. Newby
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Trials / Issue 1/2016
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-016-1717-2

Other articles of this Issue 1/2016

Trials 1/2016 Go to the issue