Skip to main content
Top
Published in: Trials 1/2016

Open Access 01-12-2016 | Research

What is the impact of obtaining medical clearance to participate in a randomised controlled trial examining a physical activity intervention on the socio-demographic and risk factor profiles of included participants?

Authors: Mitch J. Duncan, Richard R. Rosenkranz, Corneel Vandelanotte, Cristina M. Caperchione, Amanda L. Rebar, Anthony J. Maeder, Rhys Tague, Trevor N. Savage, Anetta van Itallie, W. Kerry Mummery, Gregory S. Kolt

Published in: Trials | Issue 1/2016

Login to get access

Abstract

Background

Requiring individuals to obtain medical clearance to exercise prior to participation in physical activity interventions is common. The impact this has on the socio-demographic characteristic profiles of participants who end up participating in the intervention is not clear.

Methods

As part of the multi-component eligibility screening for inclusion in a three-arm randomised controlled trial examining the efficacy of a web-based physical activity intervention, individuals interested in participating were required to complete the Physical Activity Readiness Questionnaire (PAR-Q). The PAR-Q identified individuals as having lower or higher risk. Higher-risk individuals were required to obtain medical exercise clearance prior to enrolment. Comparisons of the socio-demographic characteristics of the lower- and higher-risk individuals were performed using t tests and chi-square tests (p = 0.05).

Results

A total of 1244 individuals expressed interest in participating, and 432 were enrolled without needing to undergo further screening. Of the 251 individuals required to obtain medical clearance, 148 received clearance, 15 did not receive clearance and 88 did not return any form of clearance. A total of 105 individuals were enrolled after obtaining clearance, and the most frequent reason for being required to seek clearance was for using blood pressure/heart condition medication. Higher-risk individuals were significantly older, had a higher body mass index and engaged in more sedentary behaviour than lower-risk individuals.

Conclusions

Use of more inclusive participant screening protocols that maintain high levels of participant safety are encouraged. Allowing individuals to obtain medical clearance to participate can result in including a more diverse population likely to benefit most from participation.

Trial registration

Australian New Zealand Clinical Trials Registry (ACTRN12611000157​976). Registered on 9 February 2011.
Literature
1.
go back to reference Whitfield GP, Pettee Gabriel KK, Rahbar MH, Kohl 3rd HW. Application of the American Heart Association/American College of Sports Medicine Adult Preparticipation Screening Checklist to a nationally representative sample of US adults aged ≥40 years from the National Health and Nutrition Examination Survey 2001 to 2004. Circulation. 2014;129:1113–20.CrossRefPubMedPubMedCentral Whitfield GP, Pettee Gabriel KK, Rahbar MH, Kohl 3rd HW. Application of the American Heart Association/American College of Sports Medicine Adult Preparticipation Screening Checklist to a nationally representative sample of US adults aged ≥40 years from the National Health and Nutrition Examination Survey 2001 to 2004. Circulation. 2014;129:1113–20.CrossRefPubMedPubMedCentral
4.
go back to reference Warburton DE, Gledhill N, Jamnik VK, Bredin SS, McKenzie DC, Stone J, et al. Evidence-based risk assessment and recommendations for physical activity clearance: consensus document 2011. Appl Physiol Nutr Metab. 2011;36 Suppl 1:S266–98.CrossRefPubMed Warburton DE, Gledhill N, Jamnik VK, Bredin SS, McKenzie DC, Stone J, et al. Evidence-based risk assessment and recommendations for physical activity clearance: consensus document 2011. Appl Physiol Nutr Metab. 2011;36 Suppl 1:S266–98.CrossRefPubMed
5.
go back to reference Warburton DE, Jamnik VK, Bredin SS, McKenzie DC, Stone J, Shephard RJ, et al. Evidence-based risk assessment and recommendations for physical activity clearance: an introduction. Appl Physiol Nutr Metab. 2011;36 Suppl 1:S1–2.CrossRefPubMed Warburton DE, Jamnik VK, Bredin SS, McKenzie DC, Stone J, Shephard RJ, et al. Evidence-based risk assessment and recommendations for physical activity clearance: an introduction. Appl Physiol Nutr Metab. 2011;36 Suppl 1:S1–2.CrossRefPubMed
6.
go back to reference Davies CA, Spence JC, Vandelanotte C, Caperchione CM, Mummery WK. Meta-analysis of Internet-delivered interventions to increase physical activity levels. Int J Behav Nutr Phys Act. 2012;9:52.CrossRefPubMedPubMedCentral Davies CA, Spence JC, Vandelanotte C, Caperchione CM, Mummery WK. Meta-analysis of Internet-delivered interventions to increase physical activity levels. Int J Behav Nutr Phys Act. 2012;9:52.CrossRefPubMedPubMedCentral
7.
go back to reference Hutchesson MJ, Rollo ME, Krukowski R, Ells L, Harvey J, Morgan PJ, et al. eHealth interventions for the prevention and treatment of overweight and obesity in adults: a systematic review with meta-analysis. Obes Rev. 2015;16:376–92.CrossRefPubMed Hutchesson MJ, Rollo ME, Krukowski R, Ells L, Harvey J, Morgan PJ, et al. eHealth interventions for the prevention and treatment of overweight and obesity in adults: a systematic review with meta-analysis. Obes Rev. 2015;16:376–92.CrossRefPubMed
8.
go back to reference Waters LA, Galichet B, Owen N, Eakin E. Who participates in physical activity intervention trials? J Phys Act Health. 2011;8:85–103.CrossRefPubMed Waters LA, Galichet B, Owen N, Eakin E. Who participates in physical activity intervention trials? J Phys Act Health. 2011;8:85–103.CrossRefPubMed
9.
go back to reference Kolt GS, Rosenkranz RR, Savage TN, Maeder AJ, Vandelanotte C, Duncan MJ, et al. WALK 2.0 - using Web 2.0 applications to promote health-related physical activity: a randomised controlled trial protocol. BMC Public Health. 2013;13:436.CrossRefPubMedPubMedCentral Kolt GS, Rosenkranz RR, Savage TN, Maeder AJ, Vandelanotte C, Duncan MJ, et al. WALK 2.0 - using Web 2.0 applications to promote health-related physical activity: a randomised controlled trial protocol. BMC Public Health. 2013;13:436.CrossRefPubMedPubMedCentral
10.
go back to reference Caperchione CM, Duncan MJ, Rosenkranz RR, Vandelannote C, van Itallie AK, Savage TN, et al. Recruitment, screening, and baseline participant characteristics in the WALK 2.0 study: a randomized controlled trial using Web 2.0 applications to promote physical activity. Contemp Clin Trials Commun. 2016;2:25–33.CrossRef Caperchione CM, Duncan MJ, Rosenkranz RR, Vandelannote C, van Itallie AK, Savage TN, et al. Recruitment, screening, and baseline participant characteristics in the WALK 2.0 study: a randomized controlled trial using Web 2.0 applications to promote physical activity. Contemp Clin Trials Commun. 2016;2:25–33.CrossRef
11.
go back to reference Rose SB, Elley CR, Lawton BA, Dowell AC. A single question reliably identifies physically inactive women in primary care. N Z Med J. 2008;121:U2897.PubMed Rose SB, Elley CR, Lawton BA, Dowell AC. A single question reliably identifies physically inactive women in primary care. N Z Med J. 2008;121:U2897.PubMed
12.
go back to reference Guertler D, Vandelanotte C, Kirwan M, Duncan MJ. Engagement and nonusage attrition with a free physical activity promotion program: the case of 10,000 Steps Australia. J Med Internet Res. 2015;17(7):e176.CrossRefPubMedPubMedCentral Guertler D, Vandelanotte C, Kirwan M, Duncan MJ. Engagement and nonusage attrition with a free physical activity promotion program: the case of 10,000 Steps Australia. J Med Internet Res. 2015;17(7):e176.CrossRefPubMedPubMedCentral
13.
go back to reference Vandelanotte C, Stanton R, Rebar A, Van Itallie A, Caperchione C, Duncan M, et al. Physical activity screening to recruit inactive randomized controlled trial participants: how much is too much? Trials. 2015;16:446.CrossRefPubMedPubMedCentral Vandelanotte C, Stanton R, Rebar A, Van Itallie A, Caperchione C, Duncan M, et al. Physical activity screening to recruit inactive randomized controlled trial participants: how much is too much? Trials. 2015;16:446.CrossRefPubMedPubMedCentral
14.
go back to reference Brown WJ, Bauman A, Chey T, Trost S, Mummery K. Comparison of surveys used to measure physical activity. Aust N Z J Public Health. 2004;28:128–34.CrossRefPubMed Brown WJ, Bauman A, Chey T, Trost S, Mummery K. Comparison of surveys used to measure physical activity. Aust N Z J Public Health. 2004;28:128–34.CrossRefPubMed
15.
go back to reference Brown WJ, Bauman A, Trost S, Mummery WK, Owen N. Test-retest reliability of four physical activity measures used in population surveys. J Sci Med Sport. 2004;7:205–15.CrossRefPubMed Brown WJ, Bauman A, Trost S, Mummery WK, Owen N. Test-retest reliability of four physical activity measures used in population surveys. J Sci Med Sport. 2004;7:205–15.CrossRefPubMed
16.
go back to reference Bredin SS, Gledhill N, Jamnik VK, Warburton DE. PAR-Q+ and ePARmed-X+: new risk stratification and physical activity clearance strategy for physicians and patients alike. Can Fam Physician. 2013;59:273–7.PubMedPubMedCentral Bredin SS, Gledhill N, Jamnik VK, Warburton DE. PAR-Q+ and ePARmed-X+: new risk stratification and physical activity clearance strategy for physicians and patients alike. Can Fam Physician. 2013;59:273–7.PubMedPubMedCentral
Metadata
Title
What is the impact of obtaining medical clearance to participate in a randomised controlled trial examining a physical activity intervention on the socio-demographic and risk factor profiles of included participants?
Authors
Mitch J. Duncan
Richard R. Rosenkranz
Corneel Vandelanotte
Cristina M. Caperchione
Amanda L. Rebar
Anthony J. Maeder
Rhys Tague
Trevor N. Savage
Anetta van Itallie
W. Kerry Mummery
Gregory S. Kolt
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Trials / Issue 1/2016
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-016-1715-4

Other articles of this Issue 1/2016

Trials 1/2016 Go to the issue