Skip to main content
Top
Published in: Trials 1/2016

Open Access 01-12-2016 | Study protocol

The beneficial effects of cognitive training with simple calculation and reading aloud in an elderly postsurgical population: study protocol for a randomized controlled trial

Authors: Kay Kulason, Rui Nouchi, Yasushi Hoshikawa, Masafumi Noda, Yoshinori Okada, Ryuta Kawashima

Published in: Trials | Issue 1/2016

Login to get access

Abstract

Background

This project proposes a pilot study to investigate the positive healing effects of cognitive training with simple arithmetic and reading aloud on elderly postsurgical patients. Elderly patients undergoing surgery have an increased risk of Postoperative Cognitive Decline (POCD), a condition in which learning, memory, and processing speed is greatly reduced after surgery. Since elderly patients are more likely to exhibit symptoms of POCD, the incidence is increasing as the population receiving surgery has aged. Little effort has been expended, however, to find treatments for POCD. Learning therapy, which consists of a combination of reading aloud and solving simple arithmetic problems, was developed in Japan as a treatment for Alzheimer’s Disease to improve cognitive functions. Because patients with Alzheimer’s Disease experience similar issues as those with POCD in learning, memory, and processing speed, a cognitive intervention based on the learning-therapy treatments used for Alzheimer’s Disease could show advantageous outcomes for those at risk of POCD.

Methods/design

Cognitive function will be measured before and after surgery using three different tests (Mini-Mental Status Exam, Frontal Assessment Battery, and Cogstate computerized tests). Subjects will be randomly divided into two groups—one that receives a Simple Calculation and Reading Aloud intervention (SCRA) and a waitlisted control group that does not receive SCRA. To measure cognition before and after the intervention, the previously mentioned three tests will be used. The obtained data will be analyzed using statistical tests such as ANCOVA to indicate whether the cognitive intervention group has made improvements in their cognitive functions. In addition, questionnaires will also be administered to collect data on mental and emotional statuses.

Discussion

This report will be the first pilot study to investigate the beneficial effects of SCRA on elderly surgical patients. Previous studies have shown sufficient evidence on the effectiveness of learning therapy in healthy elderly people and in those with Dementia. Therefore, this study will clarify whether SCRA can improve cognitive function in the more specialized group of elderly surgical patients.

Trial registration

University Hospital Medical Information Network Clinical Trial Registry, UMIN000019832. Registered on 18 November 2015.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bedford PD. Adverse cerebral effects of anaesthesia on old people. Lancet. 1955;269(6884):259–63.CrossRefPubMed Bedford PD. Adverse cerebral effects of anaesthesia on old people. Lancet. 1955;269(6884):259–63.CrossRefPubMed
2.
go back to reference Cahn-Weiner DA, Malloy PF, Boyle PA, Marran M, Salloway S. Prediction of functional status from neuropsychological tests in community-dwelling elderly individuals. Clin Neuropsychol. 2000;14(2):187–95.CrossRefPubMed Cahn-Weiner DA, Malloy PF, Boyle PA, Marran M, Salloway S. Prediction of functional status from neuropsychological tests in community-dwelling elderly individuals. Clin Neuropsychol. 2000;14(2):187–95.CrossRefPubMed
3.
go back to reference Lee Y, Kim JH, Lee KJ, Han G, Kim JL. Association of cognitive status with functional limitation and disability in older adults. Aging Clin Exp Res. 2005;17(1):20–8.CrossRefPubMed Lee Y, Kim JH, Lee KJ, Han G, Kim JL. Association of cognitive status with functional limitation and disability in older adults. Aging Clin Exp Res. 2005;17(1):20–8.CrossRefPubMed
4.
go back to reference Owsley C, McGwin G. Association between visual attention and mobility in older adults. J Am Geriatr Soc. 2004;52(11):1901–6.CrossRefPubMed Owsley C, McGwin G. Association between visual attention and mobility in older adults. J Am Geriatr Soc. 2004;52(11):1901–6.CrossRefPubMed
5.
go back to reference Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT, Heilman KM, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108(1):18–30.CrossRefPubMed Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT, Heilman KM, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108(1):18–30.CrossRefPubMed
6.
go back to reference Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS. ISPOCD Group. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 2009;110(3):548–55.CrossRefPubMed Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS. ISPOCD Group. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 2009;110(3):548–55.CrossRefPubMed
7.
8.
go back to reference Fernández-Prado S, Conlon S, Mayán-Santos JM, Gandoy-Crego M. The influence of a cognitive stimulation program on the quality of life perception among the elderly. Arch Gerontol Geriatr. 2012;54(1):181–4.CrossRefPubMed Fernández-Prado S, Conlon S, Mayán-Santos JM, Gandoy-Crego M. The influence of a cognitive stimulation program on the quality of life perception among the elderly. Arch Gerontol Geriatr. 2012;54(1):181–4.CrossRefPubMed
9.
go back to reference Tardif S, Simard M, Tardif S, Simard M. Cognitive stimulation programs in healthy elderly: a review. Int J Alzheimers Dis. 2011;2011:e378934. Tardif S, Simard M, Tardif S, Simard M. Cognitive stimulation programs in healthy elderly: a review. Int J Alzheimers Dis. 2011;2011:e378934.
10.
go back to reference Martin M, Clare L, Altgassen AM, Cameron MH, Zehnder F. Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Database Syst Rev. 2011;1:CD006220. Martin M, Clare L, Altgassen AM, Cameron MH, Zehnder F. Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Database Syst Rev. 2011;1:CD006220.
12.
go back to reference Mowszowski L, Batchelor J, Naismith SL. Early intervention for cognitive decline: can cognitive training be used as a selective prevention technique? Int Psychogeriatr. 2010;22(4):537–48.CrossRefPubMed Mowszowski L, Batchelor J, Naismith SL. Early intervention for cognitive decline: can cognitive training be used as a selective prevention technique? Int Psychogeriatr. 2010;22(4):537–48.CrossRefPubMed
13.
go back to reference Lövdén M, Bäckman L, Lindenberger U, Schaefer S, Schmiedek F. A theoretical framework for the study of adult cognitive plasticity. Psychol Bull. 2010;136(4):659–76.CrossRefPubMed Lövdén M, Bäckman L, Lindenberger U, Schaefer S, Schmiedek F. A theoretical framework for the study of adult cognitive plasticity. Psychol Bull. 2010;136(4):659–76.CrossRefPubMed
14.
15.
go back to reference Tucker-Drob EM, Johnson KE, Jones RN. The cognitive reserve hypothesis: a longitudinal examination of age-associated declines in reasoning and processing speed. Dev Psychol. 2009;45(2):431–46.CrossRefPubMedPubMedCentral Tucker-Drob EM, Johnson KE, Jones RN. The cognitive reserve hypothesis: a longitudinal examination of age-associated declines in reasoning and processing speed. Dev Psychol. 2009;45(2):431–46.CrossRefPubMedPubMedCentral
16.
go back to reference Smith GE, Housen P, Yaffe K, Ruff R, Kennison RF, Mahncke HW, et al. A cognitive training program based on principles of brain plasticity: results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. J Am Geriatr Soc. 2009;57(4):594–603.CrossRefPubMedPubMedCentral Smith GE, Housen P, Yaffe K, Ruff R, Kennison RF, Mahncke HW, et al. A cognitive training program based on principles of brain plasticity: results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. J Am Geriatr Soc. 2009;57(4):594–603.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Willis SL, Tennstedt SL, Marsiske M, Ball K, Elias J, Koepke KM, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006;296(23):2805–14.CrossRefPubMedPubMedCentral Willis SL, Tennstedt SL, Marsiske M, Ball K, Elias J, Koepke KM, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006;296(23):2805–14.CrossRefPubMedPubMedCentral
19.
go back to reference Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, et al. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288(18):2271–81.CrossRefPubMedPubMedCentral Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, et al. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288(18):2271–81.CrossRefPubMedPubMedCentral
20.
go back to reference Simões A. The effects of a cognitive training on mobility of elderly people. Stud Health Technol Inform. 1998;48:369–73.PubMed Simões A. The effects of a cognitive training on mobility of elderly people. Stud Health Technol Inform. 1998;48:369–73.PubMed
21.
go back to reference Baltes PB, Sowarka D, Kliegl R. Cognitive training research on fluid intelligence in old age: what can older adults achieve by themselves? Psychol Aging. 1989;4(2):217–21.CrossRefPubMed Baltes PB, Sowarka D, Kliegl R. Cognitive training research on fluid intelligence in old age: what can older adults achieve by themselves? Psychol Aging. 1989;4(2):217–21.CrossRefPubMed
22.
go back to reference Schaie KW, Willis SL, Hertzog C, Schulenberg JE. Effects of cognitive training on primary mental ability structure. Psychol Aging. 1987;2(3):233–42.CrossRefPubMed Schaie KW, Willis SL, Hertzog C, Schulenberg JE. Effects of cognitive training on primary mental ability structure. Psychol Aging. 1987;2(3):233–42.CrossRefPubMed
23.
go back to reference Hedden T, Gabrieli JDE. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci. 2004;5(2):87–96.CrossRefPubMed Hedden T, Gabrieli JDE. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci. 2004;5(2):87–96.CrossRefPubMed
24.
go back to reference Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet. 1998;351(9106):857–61.CrossRefPubMed Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet. 1998;351(9106):857–61.CrossRefPubMed
25.
26.
go back to reference Royall DR, Palmer R, Chiodo LK, Polk MJ. Declining executive control in normal aging predicts change in functional status: the Freedom House Study. J Am Geriatr Soc. 2004;52(3):346–52.CrossRefPubMed Royall DR, Palmer R, Chiodo LK, Polk MJ. Declining executive control in normal aging predicts change in functional status: the Freedom House Study. J Am Geriatr Soc. 2004;52(3):346–52.CrossRefPubMed
27.
go back to reference Coppin AK, Shumway-Cook A, Saczynski JS, Patel KV, Ble A, Ferrucci L, et al. Association of executive function and performance of dual-task physical tests among older adults: analyses from the InChianti study. Age Ageing. 2006;35(6):619–24.CrossRefPubMedPubMedCentral Coppin AK, Shumway-Cook A, Saczynski JS, Patel KV, Ble A, Ferrucci L, et al. Association of executive function and performance of dual-task physical tests among older adults: analyses from the InChianti study. Age Ageing. 2006;35(6):619–24.CrossRefPubMedPubMedCentral
28.
29.
go back to reference Yakhno NN, Zakharov VV, Lokshina AB. Impairment of memory and attention in the elderly. Neurosci Behav Physiol. 2007;37(3):203–8.CrossRefPubMed Yakhno NN, Zakharov VV, Lokshina AB. Impairment of memory and attention in the elderly. Neurosci Behav Physiol. 2007;37(3):203–8.CrossRefPubMed
30.
go back to reference Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev. 1996;103(3):403–28.CrossRefPubMed Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev. 1996;103(3):403–28.CrossRefPubMed
31.
go back to reference Etzioni DA, Liu JH, Maggard MA, Ko CY. The aging population and its impact on the surgery workforce. Ann Surg. 2003;238(2):170–7.PubMedPubMedCentral Etzioni DA, Liu JH, Maggard MA, Ko CY. The aging population and its impact on the surgery workforce. Ann Surg. 2003;238(2):170–7.PubMedPubMedCentral
32.
go back to reference Mahncke HW, Connor BB, Appelman J, Ahsanuddin ON, Hardy JL, Wood RA, et al. Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc Natl Acad Sci U S A. 2006;103(33):12523–8.CrossRefPubMedPubMedCentral Mahncke HW, Connor BB, Appelman J, Ahsanuddin ON, Hardy JL, Wood RA, et al. Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc Natl Acad Sci U S A. 2006;103(33):12523–8.CrossRefPubMedPubMedCentral
33.
go back to reference Ball K, Edwards JD, Ross LA. The impact of speed of processing training on cognitive and everyday functions. J Gerontol B Psychol Sci Soc Sci. 2007;62(Spec No 1):19–31.CrossRef Ball K, Edwards JD, Ross LA. The impact of speed of processing training on cognitive and everyday functions. J Gerontol B Psychol Sci Soc Sci. 2007;62(Spec No 1):19–31.CrossRef
34.
go back to reference Edwards JD, Wadley VG, Vance DE, Wood K, Roenker DL, Ball KK. The impact of speed of processing training on cognitive and everyday performance. Aging Ment Health. 2005;9(3):262–71.CrossRefPubMed Edwards JD, Wadley VG, Vance DE, Wood K, Roenker DL, Ball KK. The impact of speed of processing training on cognitive and everyday performance. Aging Ment Health. 2005;9(3):262–71.CrossRefPubMed
35.
go back to reference Uchida S, Kawashima R. Reading and solving arithmetic problems improves cognitive functions of normal aged people: a randomized controlled study. Age (Dordr). 2008;30(1):21–9.CrossRef Uchida S, Kawashima R. Reading and solving arithmetic problems improves cognitive functions of normal aged people: a randomized controlled study. Age (Dordr). 2008;30(1):21–9.CrossRef
36.
go back to reference Mozolic JL, Long AB, Morgan AR, Rawley-Payne M, Laurienti PJ. A cognitive training intervention improves modality-specific attention in a randomized controlled trial of healthy older adults. Neurobiol Aging. 2011;32(4):655–68.CrossRefPubMed Mozolic JL, Long AB, Morgan AR, Rawley-Payne M, Laurienti PJ. A cognitive training intervention improves modality-specific attention in a randomized controlled trial of healthy older adults. Neurobiol Aging. 2011;32(4):655–68.CrossRefPubMed
37.
go back to reference Graves WW, Desai R, Humphries C, Seidenberg MS, Binder JR. Neural systems for reading aloud: a multiparametric approach. Cereb Cortex. 2010;20(8):1799–815.CrossRefPubMed Graves WW, Desai R, Humphries C, Seidenberg MS, Binder JR. Neural systems for reading aloud: a multiparametric approach. Cereb Cortex. 2010;20(8):1799–815.CrossRefPubMed
38.
go back to reference Ino T, Nakai R, Azuma T, Kimura T, Fukuyama H. Recognition and reading aloud of kana and kanji word: an fMRI study. Brain Res Bull. 2009;78(4–5):232–9.CrossRefPubMed Ino T, Nakai R, Azuma T, Kimura T, Fukuyama H. Recognition and reading aloud of kana and kanji word: an fMRI study. Brain Res Bull. 2009;78(4–5):232–9.CrossRefPubMed
39.
go back to reference Parker Jones O, Green DW, Grogan A, Pliatsikas C, Filippopolitis K, Ali N, et al. Where, when and why brain activation differs for bilinguals and monolinguals during picture naming and reading aloud. Cereb Cortex. 2012;22(4):892–902.CrossRefPubMed Parker Jones O, Green DW, Grogan A, Pliatsikas C, Filippopolitis K, Ali N, et al. Where, when and why brain activation differs for bilinguals and monolinguals during picture naming and reading aloud. Cereb Cortex. 2012;22(4):892–902.CrossRefPubMed
40.
go back to reference Miura N, Iwata K, Watanabe J, Sugiura M, Akitsuki Y, Sassa Y, et al. Cortical activation during reading aloud of long sentences: fMRI study. Neuroreport. 2003;14(12):1563–6.CrossRefPubMed Miura N, Iwata K, Watanabe J, Sugiura M, Akitsuki Y, Sassa Y, et al. Cortical activation during reading aloud of long sentences: fMRI study. Neuroreport. 2003;14(12):1563–6.CrossRefPubMed
41.
go back to reference Miura N, Watanabe J, Iwata K, Sassa Y, Riera J, Tsuchiya H, et al. Cortical activation during reading of ancient versus modern Japanese texts: fMRI study. Neuroimage. 2005;26(2):426–31.CrossRefPubMed Miura N, Watanabe J, Iwata K, Sassa Y, Riera J, Tsuchiya H, et al. Cortical activation during reading of ancient versus modern Japanese texts: fMRI study. Neuroimage. 2005;26(2):426–31.CrossRefPubMed
42.
go back to reference Arsalidou M, Taylor MJ. Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage. 2011;54(3):2382–93.CrossRefPubMed Arsalidou M, Taylor MJ. Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage. 2011;54(3):2382–93.CrossRefPubMed
43.
go back to reference Kawashima R, Taira M, Okita K, Inoue K, Tajima N, Yoshida H, et al. A functional MRI study of simple arithmetic--a comparison between children and adults. Brain Res Cogn Brain Res. 2004;18(3):227–33.CrossRefPubMed Kawashima R, Taira M, Okita K, Inoue K, Tajima N, Yoshida H, et al. A functional MRI study of simple arithmetic--a comparison between children and adults. Brain Res Cogn Brain Res. 2004;18(3):227–33.CrossRefPubMed
44.
go back to reference Menon V, Rivera SM, White CD, Glover GH, Reiss AL. Dissociating prefrontal and parietal cortex activation during arithmetic processing. Neuroimage. 2000;12(4):357–65.CrossRefPubMed Menon V, Rivera SM, White CD, Glover GH, Reiss AL. Dissociating prefrontal and parietal cortex activation during arithmetic processing. Neuroimage. 2000;12(4):357–65.CrossRefPubMed
45.
go back to reference Kawashima R, Okita K, Yamazaki R, Tajima N, Yoshida H, Taira M, et al. Reading aloud and arithmetic calculation improve frontal function of people with dementia. J Gerontol A Biol Sci Med Sci. 2005;60(3):380–4.CrossRefPubMed Kawashima R, Okita K, Yamazaki R, Tajima N, Yoshida H, Taira M, et al. Reading aloud and arithmetic calculation improve frontal function of people with dementia. J Gerontol A Biol Sci Med Sci. 2005;60(3):380–4.CrossRefPubMed
46.
go back to reference Nouchi R, Taki Y, Takeuchi H, Nozawa T, Sekiguchi A, Kawashima R. Reading aloud and solving simple arithmetic calculation intervention (learning therapy) improves inhibition, verbal episodic memory, focus attention and processing speed in healthy elderly people: evidence from a randomized controlled trial. Front Hum Neurosci. 2016;10:217.CrossRefPubMedPubMedCentral Nouchi R, Taki Y, Takeuchi H, Nozawa T, Sekiguchi A, Kawashima R. Reading aloud and solving simple arithmetic calculation intervention (learning therapy) improves inhibition, verbal episodic memory, focus attention and processing speed in healthy elderly people: evidence from a randomized controlled trial. Front Hum Neurosci. 2016;10:217.CrossRefPubMedPubMedCentral
47.
go back to reference Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000;55(11):1621–6.CrossRefPubMed Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000;55(11):1621–6.CrossRefPubMed
48.
go back to reference Kugo A, Terada S, Ata T, Ido Y, Kado Y, Ishihara T, et al. Japanese version of the Frontal Assessment Battery for dementia. Psychiatry Res. 2007;153(1):69–75.CrossRefPubMed Kugo A, Terada S, Ata T, Ido Y, Kado Y, Ishihara T, et al. Japanese version of the Frontal Assessment Battery for dementia. Psychiatry Res. 2007;153(1):69–75.CrossRefPubMed
49.
go back to reference Nakaaki S, Murata Y, Sato J, Shinagawa Y, Matsui T, Tatsumi H, et al. Reliability and validity of the Japanese version of the Frontal Assessment Battery in patients with the frontal variant of frontotemporal dementia. Psychiatry Clin Neurosci. 2007;61(1):78–83.CrossRefPubMed Nakaaki S, Murata Y, Sato J, Shinagawa Y, Matsui T, Tatsumi H, et al. Reliability and validity of the Japanese version of the Frontal Assessment Battery in patients with the frontal variant of frontotemporal dementia. Psychiatry Clin Neurosci. 2007;61(1):78–83.CrossRefPubMed
50.
go back to reference Wechsler DA. Wechsler adult intelligence scale. 3rd ed. San Antonio: The Psychological Corporation; 1997. Wechsler DA. Wechsler adult intelligence scale. 3rd ed. San Antonio: The Psychological Corporation; 1997.
51.
go back to reference Chan AW, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin J, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586.CrossRefPubMedPubMedCentral Chan AW, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin J, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586.CrossRefPubMedPubMedCentral
52.
go back to reference Pangman VC, Sloan J, Guse L. An examination of psychometric properties of the mini-mental state examination and the standardized mini-mental state examination: implications for clinical practice. Appl Nurs Res. 2000;13(4):209–13.CrossRefPubMed Pangman VC, Sloan J, Guse L. An examination of psychometric properties of the mini-mental state examination and the standardized mini-mental state examination: implications for clinical practice. Appl Nurs Res. 2000;13(4):209–13.CrossRefPubMed
53.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed
54.
go back to reference Wang W, Wang Y, Wu H, Lei L, Xu S, Shen X, et al. Postoperative cognitive dysfunction: current developments in mechanism and prevention. Med Sci Monit. 2014;20:1908–12.CrossRefPubMedPubMedCentral Wang W, Wang Y, Wu H, Lei L, Xu S, Shen X, et al. Postoperative cognitive dysfunction: current developments in mechanism and prevention. Med Sci Monit. 2014;20:1908–12.CrossRefPubMedPubMedCentral
55.
go back to reference Helkala EL, Hallikainen M, Alhainen K, et al. Usefulness of repeated presentation of Mini-Mental State Examination a diagnostic procedure—a population based study. Acta Neurol Scand. 2002;106:341–6.CrossRefPubMed Helkala EL, Hallikainen M, Alhainen K, et al. Usefulness of repeated presentation of Mini-Mental State Examination a diagnostic procedure—a population based study. Acta Neurol Scand. 2002;106:341–6.CrossRefPubMed
56.
go back to reference Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc. 1992;40(9):922–35.CrossRefPubMed Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc. 1992;40(9):922–35.CrossRefPubMed
57.
go back to reference Bugalho P, Viana-Baptista M, Bugalho P, Viana-Baptista M. Predictors of cognitive decline in the early stages of Parkinson’s disease: a brief cognitive assessment longitudinal study. Parkinson’s Dis. 2013;2013:e912037. Bugalho P, Viana-Baptista M, Bugalho P, Viana-Baptista M. Predictors of cognitive decline in the early stages of Parkinson’s disease: a brief cognitive assessment longitudinal study. Parkinson’s Dis. 2013;2013:e912037.
58.
go back to reference Barulli MR, Fontana A, Panza F, Copetti M, Bruno S, Tursi M, et al. Frontal assessment battery for detecting executive dysfunction in amyotrophic lateral sclerosis without dementia: a retrospective observational study. BMJ Open. 2015;5(9):e007069.CrossRefPubMedPubMedCentral Barulli MR, Fontana A, Panza F, Copetti M, Bruno S, Tursi M, et al. Frontal assessment battery for detecting executive dysfunction in amyotrophic lateral sclerosis without dementia: a retrospective observational study. BMJ Open. 2015;5(9):e007069.CrossRefPubMedPubMedCentral
59.
go back to reference Brown RG, Lacomblez L, Landwehrmeyer BG, Bak T, Uttner I, Dubois B, et al. Cognitive impairment in patients with multiple system atrophy and progressive supranuclear palsy. Brain. 2010;133(8):2382–93.CrossRefPubMed Brown RG, Lacomblez L, Landwehrmeyer BG, Bak T, Uttner I, Dubois B, et al. Cognitive impairment in patients with multiple system atrophy and progressive supranuclear palsy. Brain. 2010;133(8):2382–93.CrossRefPubMed
60.
go back to reference Lim YY, Ellis KA, Harrington K, Ames D, Martins RN, Masters CL, et al. Use of the CogState Brief Battery in the assessment of Alzheimer’s disease-related cognitive impairment in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. J Clin Exp Neuropsychol. 2012;34(4):345–58.CrossRefPubMed Lim YY, Ellis KA, Harrington K, Ames D, Martins RN, Masters CL, et al. Use of the CogState Brief Battery in the assessment of Alzheimer’s disease-related cognitive impairment in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. J Clin Exp Neuropsychol. 2012;34(4):345–58.CrossRefPubMed
61.
go back to reference Hammers D, Spurgeon E, Ryan K, Persad C, Heidebrink J, Barbas N, et al. Reliability of repeated cognitive assessment of dementia using a brief computerized battery. Am J Alzheimers Dis Other Demen. 2011;26(4):326–33.CrossRefPubMed Hammers D, Spurgeon E, Ryan K, Persad C, Heidebrink J, Barbas N, et al. Reliability of repeated cognitive assessment of dementia using a brief computerized battery. Am J Alzheimers Dis Other Demen. 2011;26(4):326–33.CrossRefPubMed
62.
go back to reference Falleti MG, Maruff P, Collie A, Darby DG. Practice effects associated with the repeated assessment of cognitive function using the CogState Battery at 10-minute, one-week and one-month test-retest intervals. J Clin Exp Neuropsychol. 2006;28(7):1095–112.CrossRefPubMed Falleti MG, Maruff P, Collie A, Darby DG. Practice effects associated with the repeated assessment of cognitive function using the CogState Battery at 10-minute, one-week and one-month test-retest intervals. J Clin Exp Neuropsychol. 2006;28(7):1095–112.CrossRefPubMed
63.
go back to reference Yoshida T, Suga M, Arima K, Muranaka Y, Tanaka T, Eguchi S, et al. Criterion and construct validity of the CogState Schizophrenia Battery in Japanese patients with schizophrenia. PLoS One. 2011;6(5):e20469.CrossRefPubMedPubMedCentral Yoshida T, Suga M, Arima K, Muranaka Y, Tanaka T, Eguchi S, et al. Criterion and construct validity of the CogState Schizophrenia Battery in Japanese patients with schizophrenia. PLoS One. 2011;6(5):e20469.CrossRefPubMedPubMedCentral
64.
go back to reference Clark F, Azen SP, Zemke R, Jackson J, Carlson M, Mandel D, et al. Occupational therapy for independent-living older adults. A randomized controlled trial. JAMA. 1997;278(16):1321–6.CrossRefPubMed Clark F, Azen SP, Zemke R, Jackson J, Carlson M, Mandel D, et al. Occupational therapy for independent-living older adults. A randomized controlled trial. JAMA. 1997;278(16):1321–6.CrossRefPubMed
65.
go back to reference Benjamini Y, Hochberg Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat. 2000;25:60–83.CrossRef Benjamini Y, Hochberg Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat. 2000;25:60–83.CrossRef
66.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: L. Erlbaum Associates; 1988. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: L. Erlbaum Associates; 1988.
67.
go back to reference Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.CrossRefPubMedPubMedCentral Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.CrossRefPubMedPubMedCentral
68.
go back to reference Basak C, Boot WR, Voss MW, Kramer AF. Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol Aging. 2008;23(4):765–77.CrossRefPubMedPubMedCentral Basak C, Boot WR, Voss MW, Kramer AF. Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol Aging. 2008;23(4):765–77.CrossRefPubMedPubMedCentral
69.
go back to reference Berry AS, Zanto TP, Clapp WC, Hardy JL, Delahunt PB, Mahncke HW, et al. The influence of perceptual training on working memory in older adults. PLoS One. 2010;5(7):e11537.CrossRefPubMedPubMedCentral Berry AS, Zanto TP, Clapp WC, Hardy JL, Delahunt PB, Mahncke HW, et al. The influence of perceptual training on working memory in older adults. PLoS One. 2010;5(7):e11537.CrossRefPubMedPubMedCentral
70.
go back to reference Li KZH, Roudaia E, Lussier M, Bherer L, Leroux A, McKinley PA. Benefits of cognitive dual-task training on balance performance in healthy older adults. J Gerontol A Biol Sci Med Sci. 2010;65(12):1344–52.CrossRefPubMed Li KZH, Roudaia E, Lussier M, Bherer L, Leroux A, McKinley PA. Benefits of cognitive dual-task training on balance performance in healthy older adults. J Gerontol A Biol Sci Med Sci. 2010;65(12):1344–52.CrossRefPubMed
71.
go back to reference Czaja SJ, Sharit J. Age differences in the performance of computer-based work. Psychol Aging. 1993;8(1):59–67.CrossRefPubMed Czaja SJ, Sharit J. Age differences in the performance of computer-based work. Psychol Aging. 1993;8(1):59–67.CrossRefPubMed
72.
go back to reference Czaja SJ, Sharit J. Age differences in attitudes toward computers. J Gerontol B Psychol Sci Soc Sci. 1998;53(5):329–40.CrossRef Czaja SJ, Sharit J. Age differences in attitudes toward computers. J Gerontol B Psychol Sci Soc Sci. 1998;53(5):329–40.CrossRef
73.
go back to reference Sharit J, Czaja SJ. Ageing, computer-based task performance, and stress: issues and challenges. Ergonomics. 1994;37(4):559–77.CrossRefPubMed Sharit J, Czaja SJ. Ageing, computer-based task performance, and stress: issues and challenges. Ergonomics. 1994;37(4):559–77.CrossRefPubMed
74.
go back to reference Wagner N, Hassanein K, Head M. Computer use by older adults: A multi-disciplinary review. Comput Human Behav. 2010;26(5):870–82.CrossRef Wagner N, Hassanein K, Head M. Computer use by older adults: A multi-disciplinary review. Comput Human Behav. 2010;26(5):870–82.CrossRef
75.
go back to reference Nouchi R, Taki Y, Takeuchi H, Hashizume H, Nozawa T, Sekiguchi A, et al. Beneficial effects of reading aloud and solving simple arithmetic calculation (learning therapy) on a wide range of cognitive functions in the healthy elderly: study protocol for a randomized controlled trial. Trials. 2012;13:32.CrossRefPubMedPubMedCentral Nouchi R, Taki Y, Takeuchi H, Hashizume H, Nozawa T, Sekiguchi A, et al. Beneficial effects of reading aloud and solving simple arithmetic calculation (learning therapy) on a wide range of cognitive functions in the healthy elderly: study protocol for a randomized controlled trial. Trials. 2012;13:32.CrossRefPubMedPubMedCentral
76.
go back to reference Nouchi R, Taki Y, Takeuchi H, Hashizume H, Akitsuki Y, Shigemune Y, et al. Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trials. PLoS One. 2012;7(1):e29676.CrossRefPubMedPubMedCentral Nouchi R, Taki Y, Takeuchi H, Hashizume H, Akitsuki Y, Shigemune Y, et al. Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trials. PLoS One. 2012;7(1):e29676.CrossRefPubMedPubMedCentral
77.
go back to reference Nouchi R, Taki Y, Takeuchi H, Sekiguchi A, Hashizume H, Nozawa T, et al. Four weeks of combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people: evidence from a randomized controlled trial. Age. 2014;36:787–99.CrossRefPubMed Nouchi R, Taki Y, Takeuchi H, Sekiguchi A, Hashizume H, Nozawa T, et al. Four weeks of combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people: evidence from a randomized controlled trial. Age. 2014;36:787–99.CrossRefPubMed
Metadata
Title
The beneficial effects of cognitive training with simple calculation and reading aloud in an elderly postsurgical population: study protocol for a randomized controlled trial
Authors
Kay Kulason
Rui Nouchi
Yasushi Hoshikawa
Masafumi Noda
Yoshinori Okada
Ryuta Kawashima
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Trials / Issue 1/2016
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-016-1476-0

Other articles of this Issue 1/2016

Trials 1/2016 Go to the issue