Skip to main content
Top
Published in: Trials 1/2015

Open Access 01-12-2015 | Study protocol

Rationale and study design for an individualized perioperative open lung ventilatory strategy (iPROVE): study protocol for a randomized controlled trial

Authors: Carlos Ferrando, Marina Soro, Jaume Canet, Ma Carmen Unzueta, Fernando Suárez, Julián Librero, Salvador Peiró, Alicia Llombart, Carlos Delgado, Irene León, Lucas Rovira, Fernando Ramasco, Manuel Granell, César Aldecoa, Oscar Diaz, Jaume Balust, Ignacio Garutti, Manuel de la Matta, Alberto Pensado, Rafael Gonzalez, Mª Eugenia Durán, Lucia Gallego, Santiago García del Valle, Francisco J Redondo, Pedro Diaz, David Pestaña, Aurelio Rodríguez, Javier Aguirre, Jose M García, Javier García, Elena Espinosa, Pedro Charco, Jose Navarro, Clara Rodríguez, Gerardo Tusman, Francisco Javier Belda, on behalf of the iPROVE investigators (Appendices 1 and 2)

Published in: Trials | Issue 1/2015

Login to get access

Abstract

Background

Postoperative pulmonary and non-pulmonary complications are common problems that increase morbidity and mortality in surgical patients, even though the incidence has decreased with the increased use of protective lung ventilation strategies. Previous trials have focused on standard strategies in the intraoperative or postoperative period, but without personalizing these strategies to suit the needs of each individual patient and without considering both these periods as a global perioperative lung-protective approach. The trial presented here aims at comparing postoperative complications when using an individualized ventilatory management strategy in the intraoperative and immediate postoperative periods with those when using a standard protective ventilation strategy in patients scheduled for major abdominal surgery.

Methods

This is a comparative, prospective, multicenter, randomized, and controlled, four-arm trial that will include 1012 patients with an intermediate or high risk for postoperative pulmonary complications. The patients will be divided into four groups: (1) individualized perioperative group: intra- and postoperative individualized strategy; (2) intraoperative individualized strategy + postoperative continuous positive airway pressure (CPAP); (3) intraoperative standard ventilation + postoperative CPAP; (4) intra- and postoperative standard strategy (conventional strategy). The primary outcome is a composite analysis of postoperative complications.

Discussion

The Individualized Perioperative Open-lung Ventilatory Strategy (iPROVE) is the first multicenter, randomized, and controlled trial to investigate whether an individualized perioperative approach prevents postoperative pulmonary complications.

Trial registration

Registered on 5 June 2014 with identification no. NCT02158923.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008;372:139–44.CrossRefPubMed Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008;372:139–44.CrossRefPubMed
2.
go back to reference Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ. Participants in the VA National Surgical Quality Improvement Program. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg. 2005;242:326–41.PubMedPubMedCentral Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ. Participants in the VA National Surgical Quality Improvement Program. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg. 2005;242:326–41.PubMedPubMedCentral
3.
go back to reference Warner DO. Preventing postoperative pulmonary complications: the role of the anesthesiologist. Anesthesiology. 2000;92:1467–72.CrossRefPubMed Warner DO. Preventing postoperative pulmonary complications: the role of the anesthesiologist. Anesthesiology. 2000;92:1467–72.CrossRefPubMed
6.
go back to reference Tao T, Bo L, Chen F, Xie Q, Zou Y, Hu B, et al. Effect of protective ventilation on postoperative pulmonary complications in patients undergoing general anesthesia: a meta-analysis of randomised controlled trials. BMJ Open. 2014;4:e005208. Tao T, Bo L, Chen F, Xie Q, Zou Y, Hu B, et al. Effect of protective ventilation on postoperative pulmonary complications in patients undergoing general anesthesia: a meta-analysis of randomised controlled trials. BMJ Open. 2014;4:e005208.
7.
go back to reference Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54.CrossRefPubMed Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54.CrossRefPubMed
8.
go back to reference Ferrando C, Ferrando C, Mugarra A, Gutierrez A, Carbonell JA, García M, et al. Setting individualized positive End-expiratory pressure level with a PEEP decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during One-lung ventilation. Anesth Analg. 2014;118:657–65.CrossRefPubMed Ferrando C, Ferrando C, Mugarra A, Gutierrez A, Carbonell JA, García M, et al. Setting individualized positive End-expiratory pressure level with a PEEP decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during One-lung ventilation. Anesth Analg. 2014;118:657–65.CrossRefPubMed
9.
go back to reference Whalen FX, Gajic O, Thompson GB, Kendrick ML, Que FL, Williams BA, et al. The effects of the alveolar recruitment maneuver and positive end-expiratory pressure on arterial oxygenation during laparoscopic bariatric surgery. Anesth Analg. 2006;102:98–305.CrossRef Whalen FX, Gajic O, Thompson GB, Kendrick ML, Que FL, Williams BA, et al. The effects of the alveolar recruitment maneuver and positive end-expiratory pressure on arterial oxygenation during laparoscopic bariatric surgery. Anesth Analg. 2006;102:98–305.CrossRef
10.
go back to reference Wolthuis EK, Vlaar AP, Choi G, Roelofs JJ, Juffermans NP, Schultz MJ. Mechanical ventilation using noninjurious ventilation settings causes lung injury in the absence of preexisting lung injury in healthy mice. Crit Care. 2009;13:R1.CrossRefPubMedPubMedCentral Wolthuis EK, Vlaar AP, Choi G, Roelofs JJ, Juffermans NP, Schultz MJ. Mechanical ventilation using noninjurious ventilation settings causes lung injury in the absence of preexisting lung injury in healthy mice. Crit Care. 2009;13:R1.CrossRefPubMedPubMedCentral
11.
go back to reference Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA. 2003;289:2104–12.CrossRefPubMed Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA. 2003;289:2104–12.CrossRefPubMed
12.
go back to reference Michelet P, D’Journo XB, Roch A, Doddoli C, Marin V, Papazian L, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105:911–9.CrossRefPubMed Michelet P, D’Journo XB, Roch A, Doddoli C, Marin V, Papazian L, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105:911–9.CrossRefPubMed
13.
go back to reference The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef
14.
go back to reference Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end- expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34:1311–8.CrossRefPubMed Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end- expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34:1311–8.CrossRefPubMed
15.
go back to reference Needham D, Colantuoni E, Mendez-Tellez PA, Dinglas VD, Sevransky JE, Dennison Himmelfarb CR, et al. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study. BMJ. 2012;344:2124–36.CrossRef Needham D, Colantuoni E, Mendez-Tellez PA, Dinglas VD, Sevransky JE, Dennison Himmelfarb CR, et al. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study. BMJ. 2012;344:2124–36.CrossRef
16.
go back to reference Determann RM, Royakkers A, Wolthuis EK, Vlaar AP, Choi G, Paulus F, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care. 2010;14:R1.CrossRefPubMedPubMedCentral Determann RM, Royakkers A, Wolthuis EK, Vlaar AP, Choi G, Paulus F, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care. 2010;14:R1.CrossRefPubMedPubMedCentral
17.
go back to reference Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative Low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–37.CrossRefPubMed Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative Low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–37.CrossRefPubMed
18.
go back to reference Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Espósito DC, Pasqualucci Mde O, et al. Association between use of lung- protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–9.CrossRefPubMed Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Espósito DC, Pasqualucci Mde O, et al. Association between use of lung- protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–9.CrossRefPubMed
19.
go back to reference Hemmes SN, Serpa Neto A, Schultz MJ. Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis. Curr Opin Anesthesiol. 2013;26:126–33.CrossRef Hemmes SN, Serpa Neto A, Schultz MJ. Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis. Curr Opin Anesthesiol. 2013;26:126–33.CrossRef
20.
go back to reference The PROVE. Network investigators. High versus low positive end-expiratory pressure during general anesthesia for open abdominal surgery (PROVHILO trial): a multicenter randomised controlled trial. Lancet. 2014;384:495–503.CrossRef The PROVE. Network investigators. High versus low positive end-expiratory pressure during general anesthesia for open abdominal surgery (PROVHILO trial): a multicenter randomised controlled trial. Lancet. 2014;384:495–503.CrossRef
21.
22.
go back to reference Ferrando C, Soro M, Belda J. Protective strategies during cardiopulmanory bypass: ventilation, anesthestics and oxygen. Curr Opin Anaesthesiol. 2014. Epub ahead of print. Ferrando C, Soro M, Belda J. Protective strategies during cardiopulmanory bypass: ventilation, anesthestics and oxygen. Curr Opin Anaesthesiol. 2014. Epub ahead of print.
23.
go back to reference García-de-la-Asunción J, Barber G, Rus D. Hyperoxia during colon surgery is associated with a reduction of xanthine oxidase activity and oxidative stress in colonic mucosa. Redox Rep. 2011;16:121–8.CrossRefPubMed García-de-la-Asunción J, Barber G, Rus D. Hyperoxia during colon surgery is associated with a reduction of xanthine oxidase activity and oxidative stress in colonic mucosa. Redox Rep. 2011;16:121–8.CrossRefPubMed
24.
go back to reference Hovaguimian F, Lysakowski C, Elia N, Tramèr MR. Effect of intraoperative high inspired oxigen fraction on surgical site infection, postoperative nausea and vomiting, and pulmonary function: systematic review and meta-analysis of randomized trials. Anesthesiology. 2013;119:303–16.CrossRefPubMed Hovaguimian F, Lysakowski C, Elia N, Tramèr MR. Effect of intraoperative high inspired oxigen fraction on surgical site infection, postoperative nausea and vomiting, and pulmonary function: systematic review and meta-analysis of randomized trials. Anesthesiology. 2013;119:303–16.CrossRefPubMed
25.
go back to reference Belda FJ, Catalá-López F, Greif R, Canet J. Benefits and risks of intraoperative high inspired oxygen therapy: firm conclusions are still far off. Anesthesiology. 2014;120:1051–2.CrossRefPubMed Belda FJ, Catalá-López F, Greif R, Canet J. Benefits and risks of intraoperative high inspired oxygen therapy: firm conclusions are still far off. Anesthesiology. 2014;120:1051–2.CrossRefPubMed
26.
go back to reference Canet J, Belda FJ. Perioperative hyperoxia: the debate is only getting started. Anesthesiology. 2011;114:1271–3.CrossRefPubMed Canet J, Belda FJ. Perioperative hyperoxia: the debate is only getting started. Anesthesiology. 2011;114:1271–3.CrossRefPubMed
27.
go back to reference Gattinoni L, Caironi P, Carlesso E. How to ventilate patients with acute lung injury and acute respiratory distress syndrome. Curr Opin Crit Care. 2005;11:69–76.CrossRefPubMed Gattinoni L, Caironi P, Carlesso E. How to ventilate patients with acute lung injury and acute respiratory distress syndrome. Curr Opin Crit Care. 2005;11:69–76.CrossRefPubMed
28.
go back to reference Maish S, Reissmann H, Fuellekrug B, Weismann D, Rutkowski T, Tusman G, et al. Compliance and dead space fraction indicate an optimal level of positive End-expiratory pressure after recruitment in anesthetized patients. Anesth Analg. 2008;106:175–81.CrossRef Maish S, Reissmann H, Fuellekrug B, Weismann D, Rutkowski T, Tusman G, et al. Compliance and dead space fraction indicate an optimal level of positive End-expiratory pressure after recruitment in anesthetized patients. Anesth Analg. 2008;106:175–81.CrossRef
29.
go back to reference Glossop A, Shephard N, Bryden DC, Mills GH. Non-invasive ventilation for weaning, avoiding reintubation after extubation and in the postoperative period: a meta-analysis. Br J Anaesth. 2012;109:305–14.CrossRefPubMed Glossop A, Shephard N, Bryden DC, Mills GH. Non-invasive ventilation for weaning, avoiding reintubation after extubation and in the postoperative period: a meta-analysis. Br J Anaesth. 2012;109:305–14.CrossRefPubMed
30.
go back to reference Ireland CJ, Chapman TM, Mathew SF, Herbison GP, Zacharias M. Continuous positive airway pressure (CPAP) during the postoperative period for prevention of postoperative morbidity and mortality following major abdominal surgery. Cochrane Database Syst Rev. 2014;8:CD008930.PubMed Ireland CJ, Chapman TM, Mathew SF, Herbison GP, Zacharias M. Continuous positive airway pressure (CPAP) during the postoperative period for prevention of postoperative morbidity and mortality following major abdominal surgery. Cochrane Database Syst Rev. 2014;8:CD008930.PubMed
31.
go back to reference Canet J, Gallart L, Gomar C, Paluzie G, Vallès J, Castillo J, et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology. 2010;113:1338–50.CrossRefPubMed Canet J, Gallart L, Gomar C, Paluzie G, Vallès J, Castillo J, et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology. 2010;113:1338–50.CrossRefPubMed
32.
go back to reference Tusman G, Belda FJ. Treatment of anesthesia-induced lung collapse with lung recruitment maneuvers. CACC. 2010;21:244–9. Tusman G, Belda FJ. Treatment of anesthesia-induced lung collapse with lung recruitment maneuvers. CACC. 2010;21:244–9.
33.
go back to reference Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33.PubMed Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33.PubMed
34.
go back to reference Authors/Task Force Members, Dickstein K, Cohen-Solal A, Filippatos G, McMurray J, Ponikowski P, et al. ESC. Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the european society of cardiology. Developed in collaboration with the heart failure association of the ESC (HFA) and endorsed by the european society of intensive care medicine (ESICM). Eur Heart J. 2008;29:2388–442. Authors/Task Force Members, Dickstein K, Cohen-Solal A, Filippatos G, McMurray J, Ponikowski P, et al. ESC. Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the european society of cardiology. Developed in collaboration with the heart failure association of the ESC (HFA) and endorsed by the european society of intensive care medicine (ESICM). Eur Heart J. 2008;29:2388–442.
35.
go back to reference Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.CrossRefPubMedPubMedCentral Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.CrossRefPubMedPubMedCentral
36.
go back to reference Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol. 1992;13:606–8.CrossRefPubMed Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol. 1992;13:606–8.CrossRefPubMed
37.
go back to reference Chow S. Sample Size calculations in clinical research. Chapman & Hall/CRC Biostatistics Series; 2008 Chow S. Sample Size calculations in clinical research. Chapman & Hall/CRC Biostatistics Series; 2008
38.
go back to reference Haybittle JL. Repeated assessment of results in clinical trials of cancer treatment. Br J Radiol. 1971;44:793–7.CrossRefPubMed Haybittle JL. Repeated assessment of results in clinical trials of cancer treatment. Br J Radiol. 1971;44:793–7.CrossRefPubMed
39.
go back to reference Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I Introduction and design. Br J Cancer. 1976;34:585–612.CrossRefPubMedPubMedCentral Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I Introduction and design. Br J Cancer. 1976;34:585–612.CrossRefPubMedPubMedCentral
40.
go back to reference Bendixen HH, Hedley-Whyte J, Laver MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation: a concept of atelectasis. N Engl J Med. 1963;269:991–6.CrossRefPubMed Bendixen HH, Hedley-Whyte J, Laver MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation: a concept of atelectasis. N Engl J Med. 1963;269:991–6.CrossRefPubMed
41.
go back to reference Magnusson L, Spahn DR. New concepts of atelectasis during general anaesthesia. Br J Anaesth. 2003;91:61e72.CrossRef Magnusson L, Spahn DR. New concepts of atelectasis during general anaesthesia. Br J Anaesth. 2003;91:61e72.CrossRef
42.
go back to reference Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102:838–54.CrossRefPubMed Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102:838–54.CrossRefPubMed
43.
go back to reference Steinberg JM, Schiller HJ, Halter JM, Gatto LA, Lee HM, Pavone LA, et al. Alveolar instability causes early ventilator-induced lung injury independent of neutrophils. Am J Respir Crit Care Med. 2004;169:57e63.CrossRef Steinberg JM, Schiller HJ, Halter JM, Gatto LA, Lee HM, Pavone LA, et al. Alveolar instability causes early ventilator-induced lung injury independent of neutrophils. Am J Respir Crit Care Med. 2004;169:57e63.CrossRef
Metadata
Title
Rationale and study design for an individualized perioperative open lung ventilatory strategy (iPROVE): study protocol for a randomized controlled trial
Authors
Carlos Ferrando
Marina Soro
Jaume Canet
Ma Carmen Unzueta
Fernando Suárez
Julián Librero
Salvador Peiró
Alicia Llombart
Carlos Delgado
Irene León
Lucas Rovira
Fernando Ramasco
Manuel Granell
César Aldecoa
Oscar Diaz
Jaume Balust
Ignacio Garutti
Manuel de la Matta
Alberto Pensado
Rafael Gonzalez
Mª Eugenia Durán
Lucia Gallego
Santiago García del Valle
Francisco J Redondo
Pedro Diaz
David Pestaña
Aurelio Rodríguez
Javier Aguirre
Jose M García
Javier García
Elena Espinosa
Pedro Charco
Jose Navarro
Clara Rodríguez
Gerardo Tusman
Francisco Javier Belda
on behalf of the iPROVE investigators (Appendices 1 and 2)
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Trials / Issue 1/2015
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-015-0694-1

Other articles of this Issue 1/2015

Trials 1/2015 Go to the issue