Skip to main content
Top
Published in: Trials 1/2015

Open Access 01-12-2015 | Study protocol

Investigating the non-specific effects of BCG vaccination on the innate immune system in Ugandan neonates: study protocol for a randomised controlled trial

Authors: Sarah Prentice, Emily L Webb, Hazel M Dockrell, Pontiano Kaleebu, Alison M Elliott, Stephen Cose

Published in: Trials | Issue 1/2015

Login to get access

Abstract

Background

The potential for Bacillus Calmette-Guérin (BCG) vaccination to protect infants against non-mycobacterial disease has been suggested by a randomised controlled trial conducted in low birth-weight infants in West Africa. Trials to confirm these findings in healthy term infants, and in a non-West African setting, have not yet been carried out. In addition, a biological mechanism to explain such heterologous effects of BCG in the neonatal period has not been confirmed. This trial aims to address these issues by evaluating whether BCG non-specifically enhances the innate immune system in term Ugandan neonates, leading to increased protection from a variety of infectious diseases.

Methods

This trial will be an investigator-blinded, randomised controlled trial of 560 Ugandan neonates, comparing those receiving BCG at birth with those receiving BCG at 6 weeks of age. This design allows comparison of outcomes between BCG-vaccinated and -naïve infants until 6 weeks of age, and between early and delayed BCG-vaccinated infants from 6 weeks of age onwards. The primary outcomes of the study will be a panel of innate immune parameters. Secondary outcomes will include clinical illness measures.

Discussion

Investigation of the possible broadly protective effects of neonatal BCG immunisation, and the optimal vaccination timing to produce these effects, could have profound implications for public healthcare policy. Evidence of protection against heterologous pathogens would underscore the importance of prioritising BCG administration in a timely manner for all infants, provide advocacy against the termination of BCG’s use and support novel anti-tuberculous vaccine strategies that would safeguard such beneficial effects.

Trial registration

ISRCTN59683017: registration date: 15 January 2014
Appendix
Available only for authorised users
Literature
1.
go back to reference Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet. 2006;367:1173–80.CrossRefPubMed Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet. 2006;367:1173–80.CrossRefPubMed
2.
go back to reference Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995;346:1339–45.CrossRefPubMed Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995;346:1339–45.CrossRefPubMed
3.
4.
go back to reference Shann F. The nonspecific effects of vaccines and the expanded program on immunization. J Infect Dis. 2011;204:182–4.CrossRefPubMed Shann F. The nonspecific effects of vaccines and the expanded program on immunization. J Infect Dis. 2011;204:182–4.CrossRefPubMed
5.
go back to reference Aronson JD. BCG vaccination among American Indians. Am Rev Tuberc. 1948;57:96–9.PubMed Aronson JD. BCG vaccination among American Indians. Am Rev Tuberc. 1948;57:96–9.PubMed
6.
go back to reference Aronson JD. Protective vaccination against tuberculosis, with special reference to BCG vaccine. Minn Med. 1948;31:1336.PubMed Aronson JD. Protective vaccination against tuberculosis, with special reference to BCG vaccine. Minn Med. 1948;31:1336.PubMed
7.
go back to reference Levine MI, Sackett MF. Results of BCG immunization in New York City. Am Rev Tuberc. 1946;53:517–32.PubMed Levine MI, Sackett MF. Results of BCG immunization in New York City. Am Rev Tuberc. 1946;53:517–32.PubMed
9.
go back to reference Rosenthal SR, Loewinsohne, Graham ML, Liveright D, Thorne G, Johnson V. BCG vaccination against tuberculosis in Chicago. A twenty-year study statistically analyzed. Pediatrics. 1961;28:622–41.PubMed Rosenthal SR, Loewinsohne, Graham ML, Liveright D, Thorne G, Johnson V. BCG vaccination against tuberculosis in Chicago. A twenty-year study statistically analyzed. Pediatrics. 1961;28:622–41.PubMed
10.
go back to reference Garly ML, Bale C, Martins CL, Balde MA, Hedegaard KL, Whittle HC, et al. BCG vaccination among West African infants is associated with less anergy to tuberculin and diphtheria-tetanus antigens. Vaccine. 2001;20:468–74.CrossRefPubMed Garly ML, Bale C, Martins CL, Balde MA, Hedegaard KL, Whittle HC, et al. BCG vaccination among West African infants is associated with less anergy to tuberculin and diphtheria-tetanus antigens. Vaccine. 2001;20:468–74.CrossRefPubMed
11.
12.
go back to reference Roth A, Garly ML, Jensen H, Nielsen J, Aaby P. Bacillus Calmette-Guerin vaccination and infant mortality. Expert Rev Vaccines. 2006;5:277–93.CrossRefPubMed Roth A, Garly ML, Jensen H, Nielsen J, Aaby P. Bacillus Calmette-Guerin vaccination and infant mortality. Expert Rev Vaccines. 2006;5:277–93.CrossRefPubMed
13.
go back to reference Roth A, Gustafson P, Nhaga A, Djana Q, Poulsen A, Garly ML, et al. BCG vaccination scar associated with better childhood survival in Guinea-Bissau. Int J Epidemiol. 2005;34:540–7.CrossRefPubMed Roth A, Gustafson P, Nhaga A, Djana Q, Poulsen A, Garly ML, et al. BCG vaccination scar associated with better childhood survival in Guinea-Bissau. Int J Epidemiol. 2005;34:540–7.CrossRefPubMed
14.
go back to reference Roth AE, Benn CS, Ravn H, Rodrigues A, Lisse IM, Yazdanbakhsh M, et al. Effect of revaccination with BCG in early childhood on mortality: randomised trial in Guinea-Bissau. BMJ. 2010;340:c671.CrossRefPubMedPubMedCentral Roth AE, Benn CS, Ravn H, Rodrigues A, Lisse IM, Yazdanbakhsh M, et al. Effect of revaccination with BCG in early childhood on mortality: randomised trial in Guinea-Bissau. BMJ. 2010;340:c671.CrossRefPubMedPubMedCentral
15.
go back to reference Rodrigues A, Fischer TK, Valentiner-Branth P, Nielsen J, Steinsland H, Perch M, et al. Community cohort study of rotavirus and other enteropathogens: are routine vaccinations associated with sex-differential incidence rates? Vaccine. 2006;24:4737–46.CrossRefPubMed Rodrigues A, Fischer TK, Valentiner-Branth P, Nielsen J, Steinsland H, Perch M, et al. Community cohort study of rotavirus and other enteropathogens: are routine vaccinations associated with sex-differential incidence rates? Vaccine. 2006;24:4737–46.CrossRefPubMed
16.
go back to reference Veirum JE, Sodemann M, Biai S, Jakobsen M, Garly ML, Hedegaard K, et al. Routine vaccinations associated with divergent effects on female and male mortality at the paediatric ward in Bissau. Guinea-Bissau Vaccine. 2005;23:1197–204.PubMed Veirum JE, Sodemann M, Biai S, Jakobsen M, Garly ML, Hedegaard K, et al. Routine vaccinations associated with divergent effects on female and male mortality at the paediatric ward in Bissau. Guinea-Bissau Vaccine. 2005;23:1197–204.PubMed
17.
go back to reference Stensballe LG, Nante E, Jensen IP, Kofoed PE, Poulsen A, Jensen H, et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case–control study. Vaccine. 2005;23:1251–7.CrossRefPubMed Stensballe LG, Nante E, Jensen IP, Kofoed PE, Poulsen A, Jensen H, et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case–control study. Vaccine. 2005;23:1251–7.CrossRefPubMed
18.
go back to reference Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, Lisse IM, et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J Infect Dis. 2011;204:245–52.CrossRefPubMed Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, Lisse IM, et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J Infect Dis. 2011;204:245–52.CrossRefPubMed
19.
go back to reference Kagina BM, Abel B, Bowmaker M, Scriba TJ, Gelderbloem S, Smit E, et al. Delaying BCG vaccination from birth to 10 weeks of age may result in an enhanced memory CD4 T cell response. Vaccine. 2009;27:5488–95.CrossRefPubMedPubMedCentral Kagina BM, Abel B, Bowmaker M, Scriba TJ, Gelderbloem S, Smit E, et al. Delaying BCG vaccination from birth to 10 weeks of age may result in an enhanced memory CD4 T cell response. Vaccine. 2009;27:5488–95.CrossRefPubMedPubMedCentral
20.
go back to reference Suciliene E, Ronne T, Plesner AM, Semenaite B, Slapkauskaite D, Larsen SO, et al. Infant BCG vaccination study in Lithuania. Int J Tuberc Lung Dis. 1999;3:956–61.PubMed Suciliene E, Ronne T, Plesner AM, Semenaite B, Slapkauskaite D, Larsen SO, et al. Infant BCG vaccination study in Lithuania. Int J Tuberc Lung Dis. 1999;3:956–61.PubMed
22.
go back to reference Hussey GD, Watkins ML, Goddard EA, Gottschalk S, Hughes EJ, Iloni K, et al. Neonatal mycobacterial specific cytotoxic T-lymphocyte and cytokine profiles in response to distinct BCG vaccination strategies. Immunology. 2002;105:314–24.CrossRefPubMedPubMedCentral Hussey GD, Watkins ML, Goddard EA, Gottschalk S, Hughes EJ, Iloni K, et al. Neonatal mycobacterial specific cytotoxic T-lymphocyte and cytokine profiles in response to distinct BCG vaccination strategies. Immunology. 2002;105:314–24.CrossRefPubMedPubMedCentral
23.
go back to reference Pabst HF, Godel JC, Spady DW, McKechnie J, Grace M. Prospective trial of timing of bacillus Calmette-Guerin vaccination in Canadian Cree infants. Am Rev Respir Dis. 1989;140:1007–11.CrossRefPubMed Pabst HF, Godel JC, Spady DW, McKechnie J, Grace M. Prospective trial of timing of bacillus Calmette-Guerin vaccination in Canadian Cree infants. Am Rev Respir Dis. 1989;140:1007–11.CrossRefPubMed
24.
go back to reference Ota MO, Vekemans J, Schlegel-Haueter SE, Fielding K, Sanneh M, Kidd M, et al. Influence of Mycobacterium bovis bacillus Calmette-Guerin on antibody and cytokine responses to human neonatal vaccination. J Immunol. 2002;168:919–25.CrossRefPubMed Ota MO, Vekemans J, Schlegel-Haueter SE, Fielding K, Sanneh M, Kidd M, et al. Influence of Mycobacterium bovis bacillus Calmette-Guerin on antibody and cytokine responses to human neonatal vaccination. J Immunol. 2002;168:919–25.CrossRefPubMed
25.
go back to reference Akkoc T, Aydogan M, Yildiz A, Karakoc-Aydiner E, Eifan A, Keles S, et al. Neonatal BCG vaccination induces IL-10 production by CD4+ CD25+ T cells. Pediatr Allergy Immunol. 2010;21:1059–63.CrossRefPubMed Akkoc T, Aydogan M, Yildiz A, Karakoc-Aydiner E, Eifan A, Keles S, et al. Neonatal BCG vaccination induces IL-10 production by CD4+ CD25+ T cells. Pediatr Allergy Immunol. 2010;21:1059–63.CrossRefPubMed
26.
go back to reference Aggarwal A, Dutta AK. Timing and dose of BCG vaccination in infants as assessed by postvaccination tuberculin sensitivity. Indian Pediatr. 1995;32:635–9.PubMed Aggarwal A, Dutta AK. Timing and dose of BCG vaccination in infants as assessed by postvaccination tuberculin sensitivity. Indian Pediatr. 1995;32:635–9.PubMed
27.
go back to reference Burl S, Adetifa UJ, Cox M, Touray E, Ota MO, Marchant A, et al. Delaying bacillus Calmette-Guerin vaccination from birth to 4 1/2 months of age reduces postvaccination Th1 and IL-17 responses but leads to comparable mycobacterial responses at 9 months of age. J Immunol. 2010;185:2620–8.CrossRefPubMed Burl S, Adetifa UJ, Cox M, Touray E, Ota MO, Marchant A, et al. Delaying bacillus Calmette-Guerin vaccination from birth to 4 1/2 months of age reduces postvaccination Th1 and IL-17 responses but leads to comparable mycobacterial responses at 9 months of age. J Immunol. 2010;185:2620–8.CrossRefPubMed
28.
go back to reference Higgins JPT S-WK, Reingold A. Systematic review of the non-specific effects of BCG, DTP and measles containing vaccines. In: WHO SAGE review. 2014. Higgins JPT S-WK, Reingold A. Systematic review of the non-specific effects of BCG, DTP and measles containing vaccines. In: WHO SAGE review. 2014.
29.
go back to reference Marchant A, Goetghebuer T, Ota MO, Wolfe I, Ceesay SJ, De Groote D, et al. Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guerin vaccination. J Immunol. 1999;163:2249–55.PubMed Marchant A, Goetghebuer T, Ota MO, Wolfe I, Ceesay SJ, De Groote D, et al. Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guerin vaccination. J Immunol. 1999;163:2249–55.PubMed
30.
go back to reference Madura Larsen J, Benn CS, Fillie Y, van der Kleij D, Aaby P, Yazdanbakhsh M. BCG stimulated dendritic cells induce an interleukin-10 producing T-cell population with no T helper 1 or T helper 2 bias in vitro. Immunology. 2007;121:276–82.CrossRefPubMedPubMedCentral Madura Larsen J, Benn CS, Fillie Y, van der Kleij D, Aaby P, Yazdanbakhsh M. BCG stimulated dendritic cells induce an interleukin-10 producing T-cell population with no T helper 1 or T helper 2 bias in vitro. Immunology. 2007;121:276–82.CrossRefPubMedPubMedCentral
31.
go back to reference Vekemans J, Amedei A, Ota MO, D’Elios MM, Goetghebuer T, Ismaili J, et al. Neonatal bacillus Calmette-Guerin vaccination induces adult-like IFN-gamma production by CD4+ T lymphocytes. Eur J Immunol. 2001;31:1531–5.CrossRefPubMed Vekemans J, Amedei A, Ota MO, D’Elios MM, Goetghebuer T, Ismaili J, et al. Neonatal bacillus Calmette-Guerin vaccination induces adult-like IFN-gamma production by CD4+ T lymphocytes. Eur J Immunol. 2001;31:1531–5.CrossRefPubMed
32.
go back to reference Lutwama F, Kagina BM, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887–97.CrossRefPubMed Lutwama F, Kagina BM, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887–97.CrossRefPubMed
33.
go back to reference Anderson EJ, Webb EL, Mawa PA, Kizza M, Lyadda N, Nampijja M, et al. The influence of BCG vaccine strain on mycobacteria-specific and non-specific immune responses in a prospective cohort of infants in Uganda. Vaccine. 2012;30:2083–9.CrossRefPubMedPubMedCentral Anderson EJ, Webb EL, Mawa PA, Kizza M, Lyadda N, Nampijja M, et al. The influence of BCG vaccine strain on mycobacteria-specific and non-specific immune responses in a prospective cohort of infants in Uganda. Vaccine. 2012;30:2083–9.CrossRefPubMedPubMedCentral
34.
go back to reference Andersen A, Roth A, Jensen KJ, Erikstrup C, Lisse IM, Whittle H, et al. The immunological effect of revaccination with Bacille Calmette-Guerin vaccine at 19 months of age. Vaccine. 2013;31:2137–44.CrossRefPubMed Andersen A, Roth A, Jensen KJ, Erikstrup C, Lisse IM, Whittle H, et al. The immunological effect of revaccination with Bacille Calmette-Guerin vaccine at 19 months of age. Vaccine. 2013;31:2137–44.CrossRefPubMed
35.
go back to reference Djuardi Y, Sartono E, Wibowo H, Supali T, Yazdanbakhsh M. A longitudinal study of BCG vaccination in early childhood: the development of innate and adaptive immune responses. PLoS One. 2010;5:e14066.CrossRefPubMedPubMedCentral Djuardi Y, Sartono E, Wibowo H, Supali T, Yazdanbakhsh M. A longitudinal study of BCG vaccination in early childhood: the development of innate and adaptive immune responses. PLoS One. 2010;5:e14066.CrossRefPubMedPubMedCentral
36.
37.
go back to reference Bullen JJ, Leigh LC, Rogers HJ. The effect of iron compounds on the virulence of Escherichia coli for guinea-pigs. Immunology. 1968;15:581–8.PubMedPubMedCentral Bullen JJ, Leigh LC, Rogers HJ. The effect of iron compounds on the virulence of Escherichia coli for guinea-pigs. Immunology. 1968;15:581–8.PubMedPubMedCentral
38.
go back to reference Kochan I. The role of iron in bacterial infections, with special consideration of host-tubercle bacillus interaction. Curr Top Microbiol Immunol. 1973;60:1–30.PubMed Kochan I. The role of iron in bacterial infections, with special consideration of host-tubercle bacillus interaction. Curr Top Microbiol Immunol. 1973;60:1–30.PubMed
39.
go back to reference Debebe Z, Ammosova T, Jerebtsova M, Kurantsin-Mills J, Niu X, Charles S, et al. Iron chelators ICL670 and 311 inhibit HIV-1 transcription. Virology. 2007;367:324–33.CrossRefPubMedPubMedCentral Debebe Z, Ammosova T, Jerebtsova M, Kurantsin-Mills J, Niu X, Charles S, et al. Iron chelators ICL670 and 311 inhibit HIV-1 transcription. Virology. 2007;367:324–33.CrossRefPubMedPubMedCentral
40.
go back to reference Breidbach T, Scory S, Krauth-Siegel RL, Steverding D. Growth inhibition of bloodstream forms of Trypanosoma brucei by the iron chelator deferoxamine. Int J Parasitol. 2002;32:473–9.CrossRefPubMed Breidbach T, Scory S, Krauth-Siegel RL, Steverding D. Growth inhibition of bloodstream forms of Trypanosoma brucei by the iron chelator deferoxamine. Int J Parasitol. 2002;32:473–9.CrossRefPubMed
41.
go back to reference Francisco AF, de Abreu Vieira PM, Arantes JM, Pedrosa ML, Martins HR, Silva M, et al. Trypanosoma cruzi: effect of benznidazole therapy combined with the iron chelator desferrioxamine in infected mice. Exp Parasitol. 2008;120:314–9.CrossRefPubMed Francisco AF, de Abreu Vieira PM, Arantes JM, Pedrosa ML, Martins HR, Silva M, et al. Trypanosoma cruzi: effect of benznidazole therapy combined with the iron chelator desferrioxamine in infected mice. Exp Parasitol. 2008;120:314–9.CrossRefPubMed
42.
go back to reference Gwamaka M, Kurtis JD, Sorensen BE, Holte S, Morrison R, Mutabingwa TK, et al. Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children. Clin Infect Dis. 2012;54:1137–44.CrossRefPubMedPubMedCentral Gwamaka M, Kurtis JD, Sorensen BE, Holte S, Morrison R, Mutabingwa TK, et al. Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children. Clin Infect Dis. 2012;54:1137–44.CrossRefPubMedPubMedCentral
43.
go back to reference Harvey PW, Bell RG, Nesheim MC. Iron deficiency protects inbred mice against infection with Plasmodium chabaudi. Infect Immun. 1985;50:932–4.PubMedPubMedCentral Harvey PW, Bell RG, Nesheim MC. Iron deficiency protects inbred mice against infection with Plasmodium chabaudi. Infect Immun. 1985;50:932–4.PubMedPubMedCentral
44.
go back to reference Fiori A, Van Dijck P. Potent synergistic effect of doxycycline with fluconazole against Candida albicans is mediated by interference with iron homeostasis. Antimicrob Agents Chemother. 2012;56:3785–96.CrossRefPubMedPubMedCentral Fiori A, Van Dijck P. Potent synergistic effect of doxycycline with fluconazole against Candida albicans is mediated by interference with iron homeostasis. Antimicrob Agents Chemother. 2012;56:3785–96.CrossRefPubMedPubMedCentral
45.
go back to reference Kim J, Cho YJ, Do E, Choi J, Hu G, Cadieux B, et al. A defect in iron uptake enhances the susceptibility of Cryptococcus neoformans to azole antifungal drugs. Fungal Genet Biol. 2012;49:955–66.CrossRefPubMedPubMedCentral Kim J, Cho YJ, Do E, Choi J, Hu G, Cadieux B, et al. A defect in iron uptake enhances the susceptibility of Cryptococcus neoformans to azole antifungal drugs. Fungal Genet Biol. 2012;49:955–66.CrossRefPubMedPubMedCentral
46.
go back to reference Kochan I. Mechanism of tuberculostasis in mammalian serum. I. Role of transferrin in human serum tuberculostasis. J Infect Dis. 1969;119:11–8.CrossRefPubMed Kochan I. Mechanism of tuberculostasis in mammalian serum. I. Role of transferrin in human serum tuberculostasis. J Infect Dis. 1969;119:11–8.CrossRefPubMed
47.
go back to reference Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012;109:17537–42.CrossRefPubMedPubMedCentral Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012;109:17537–42.CrossRefPubMedPubMedCentral
48.
49.
go back to reference Mugalu J, Nakakeeto MK, Kiguli S, Kaddu-Mulindwa DH. Aetiology, risk factors and immediate outcome of bacteriologically confirmed neonatal septicaemia in Mulago hospital, Uganda. Afr Health Sci. 2006;6:120–6.PubMedPubMedCentral Mugalu J, Nakakeeto MK, Kiguli S, Kaddu-Mulindwa DH. Aetiology, risk factors and immediate outcome of bacteriologically confirmed neonatal septicaemia in Mulago hospital, Uganda. Afr Health Sci. 2006;6:120–6.PubMedPubMedCentral
50.
go back to reference Paiva Ade A, Rondo PH, Pagliusi RA, Latorre Mdo R, Cardoso MA, Gondim SS. Relationship between the iron status of pregnant women and their newborns. Rev Saude Publica. 2007;41:321–7.CrossRefPubMed Paiva Ade A, Rondo PH, Pagliusi RA, Latorre Mdo R, Cardoso MA, Gondim SS. Relationship between the iron status of pregnant women and their newborns. Rev Saude Publica. 2007;41:321–7.CrossRefPubMed
51.
go back to reference Elliott AM, Namujju PB, Mawa PA, Quigley MA, Nampijja M, Nkurunziza PM, et al. A randomised controlled trial of the effects of albendazole in pregnancy on maternal responses to mycobacterial antigens and infant responses to Bacille Calmette-Guerin (BCG) immunisation (ISRCTN328494470. BMC Infect Dis. 2005;5:115.CrossRefPubMedPubMedCentral Elliott AM, Namujju PB, Mawa PA, Quigley MA, Nampijja M, Nkurunziza PM, et al. A randomised controlled trial of the effects of albendazole in pregnancy on maternal responses to mycobacterial antigens and infant responses to Bacille Calmette-Guerin (BCG) immunisation (ISRCTN328494470. BMC Infect Dis. 2005;5:115.CrossRefPubMedPubMedCentral
52.
go back to reference Nkurunungi G, Lutangira JE, Lule SA, Akurut H, Kizindo R, Fitchett JR, et al. Determining Mycobacterium tuberculosis infection among BCG-immunised Ugandan children by T-SPOT.TB and tuberculin skin testing. PLoS One. 2012;7:e47340.CrossRefPubMedPubMedCentral Nkurunungi G, Lutangira JE, Lule SA, Akurut H, Kizindo R, Fitchett JR, et al. Determining Mycobacterium tuberculosis infection among BCG-immunised Ugandan children by T-SPOT.TB and tuberculin skin testing. PLoS One. 2012;7:e47340.CrossRefPubMedPubMedCentral
Metadata
Title
Investigating the non-specific effects of BCG vaccination on the innate immune system in Ugandan neonates: study protocol for a randomised controlled trial
Authors
Sarah Prentice
Emily L Webb
Hazel M Dockrell
Pontiano Kaleebu
Alison M Elliott
Stephen Cose
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Trials / Issue 1/2015
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-015-0682-5

Other articles of this Issue 1/2015

Trials 1/2015 Go to the issue