Skip to main content
Top
Published in: Trials 1/2015

Open Access 01-12-2015 | Research

Empirical evidence for outcome reporting bias in randomized clinical trials of acupuncture: comparison of registered records and subsequent publications

Published in: Trials | Issue 1/2015

Login to get access

Abstract

Background

Outcome reporting bias has received widespread recognition and been considered to pose two threats to the validity of clinical decision making because they overestimate the effect of treatments or distort the results of trials. However, the problem of outcome-reporting bias has not been systematically studied among randomized clinical trials of acupuncture. Our objectives were to evaluate the consistency between the registered records and subsequent publications with respect to outcomes and other data as well as to determine whether outcome-reporting bias favors significant primary outcomes.

Methods

A systematic search of 15 registries was conducted from their inception to January 2014 to identify randomized clinical trials on acupuncture for which the status was listed as ‘completed.’ The subsequent publications were retrieved by searching PubMed and three Chinese databases. Basic characteristics and the registration information were extracted from the registered records and publications. We performed comparisons regarding primary outcomes and other data between the registered records and subsequent publications to assess the consistency and selective outcome reporting.

Results

Eighty-eight trials on acupuncture with 96 published reports were identified. Only 19.3% (17/88) were registered before the start of the trial, suggesting prospective registration. The trial registration number was unavailable in 36 published reports (37.5%). A comparison of registered and published primary outcomes could be conducted in 71 publications (74.0%), and the inconsistency of the primary outcomes was identified in 45.1% (32 of 71); 71.4% (15 of 21) had a discrepancy that favored statistically significant primary outcomes, while 28.6% (6 of 21) favored nonsignificant primary outcomes. Furthermore, the other inconsistencies between the registry records and subsequent publications involved the inclusion criteria (54.7%), exclusion criteria (47.9%) and controls (22.9%).

Conclusions

We find that prospective registration for randomized clinical trials on acupuncture is insufficient, selective outcome reporting is prevalent, and the change of primary outcomes is intended to favor statistical significance. These discrepancies in outcome reporting may lead to biased and misleading results of randomized clinical trials on acupuncture. To ensure publication of reliable and unbiased results, further promotion and implementation of trial registration are still needed.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hutton JL, Williamson PR. Bias in meta-analysis due to outcome variable selection within studies. Appl Stat. 2000;49:359–70. Hutton JL, Williamson PR. Bias in meta-analysis due to outcome variable selection within studies. Appl Stat. 2000;49:359–70.
2.
go back to reference Kirkham JJ, Dwan KM, Altman DA, Gamble C, Dodd S, Smyth R, et al. The impact of outcome reporting bias in randomised controlled trials on a cohort of systematic reviews. BMJ. 2010;340:c365.CrossRefPubMed Kirkham JJ, Dwan KM, Altman DA, Gamble C, Dodd S, Smyth R, et al. The impact of outcome reporting bias in randomised controlled trials on a cohort of systematic reviews. BMJ. 2010;340:c365.CrossRefPubMed
3.
go back to reference Al-Marzouki S, Roberts I, Marshall T, Evans S. The effect of scientific misconduct on the results of clinical trials: a Delphi survey. Contemp Clin Trials. 2005;26:331–7.CrossRefPubMed Al-Marzouki S, Roberts I, Marshall T, Evans S. The effect of scientific misconduct on the results of clinical trials: a Delphi survey. Contemp Clin Trials. 2005;26:331–7.CrossRefPubMed
4.
go back to reference Furukawa T, Watanabe N, Omori I, Montori V, Guyatt G. Association between unreported outcomes and effect size estimates in Cochrane meta-analyses. JAMA. 2007;297:468–70.CrossRefPubMed Furukawa T, Watanabe N, Omori I, Montori V, Guyatt G. Association between unreported outcomes and effect size estimates in Cochrane meta-analyses. JAMA. 2007;297:468–70.CrossRefPubMed
5.
go back to reference Pearson M, Peters J. Outcome reporting bias in evaluations of public health interventions: evidence of impact and the potential role of a study register. J Epidemiol Community Health. 2012;66:286–9.CrossRefPubMed Pearson M, Peters J. Outcome reporting bias in evaluations of public health interventions: evidence of impact and the potential role of a study register. J Epidemiol Community Health. 2012;66:286–9.CrossRefPubMed
7.
go back to reference Abaid LN, Grimes DA, Schulz KF. Reducing publication bias through trial registration. Obstet Gynecol. 2007;109:1434–7.CrossRefPubMed Abaid LN, Grimes DA, Schulz KF. Reducing publication bias through trial registration. Obstet Gynecol. 2007;109:1434–7.CrossRefPubMed
8.
go back to reference De Angelis C, Drazen JM, Frizelle FA, Haug C, Hoey J, Horton R, et al. Clinical trial registration: a statement from the International Committee of Medical Journal Editors. N Engl J Med. 2004;351:1250–1.CrossRefPubMed De Angelis C, Drazen JM, Frizelle FA, Haug C, Hoey J, Horton R, et al. Clinical trial registration: a statement from the International Committee of Medical Journal Editors. N Engl J Med. 2004;351:1250–1.CrossRefPubMed
9.
go back to reference Killeen S, Sourallous P, Hunter IA, Hartley JE, Grady HL. Registration rates, adequacy of registration, and a comparison of registered and published primary outcomes in randomized controlled trials published in surgery journals. Ann Surg. 2014;259:193–6.CrossRefPubMed Killeen S, Sourallous P, Hunter IA, Hartley JE, Grady HL. Registration rates, adequacy of registration, and a comparison of registered and published primary outcomes in randomized controlled trials published in surgery journals. Ann Surg. 2014;259:193–6.CrossRefPubMed
10.
go back to reference Chan AW, Hróbjartsson A, Haahr MT, Gøtzsche PC, Altman DG. Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. JAMA. 2004;291:2457–65.CrossRefPubMed Chan AW, Hróbjartsson A, Haahr MT, Gøtzsche PC, Altman DG. Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. JAMA. 2004;291:2457–65.CrossRefPubMed
11.
go back to reference Chan AW, Hróbjartsson A, Jørgensen KJ, Gøtzsche PC, Altman DG. Discrepancies in sample size calculations and data analyses reported in randomised trials: comparison of publications with protocols. BMJ. 2008;337:a2299.CrossRefPubMedPubMedCentral Chan AW, Hróbjartsson A, Jørgensen KJ, Gøtzsche PC, Altman DG. Discrepancies in sample size calculations and data analyses reported in randomised trials: comparison of publications with protocols. BMJ. 2008;337:a2299.CrossRefPubMedPubMedCentral
12.
go back to reference Von Elm E, Rollin A, Blumle A, Huwiler K, Witschi M, Egger M. Publication and non-publication of clinical trials: longitudinal study of applications submitted to a research ethics committee. SwissMed Wkly. 2008;138:197–203. Von Elm E, Rollin A, Blumle A, Huwiler K, Witschi M, Egger M. Publication and non-publication of clinical trials: longitudinal study of applications submitted to a research ethics committee. SwissMed Wkly. 2008;138:197–203.
13.
go back to reference Al-Marzouki S, Roberts I, Evans S, Marshall T. Selective reporting in clinical trials: analysis of trial protocols accepted by the Lancet. Lancet. 2008;372:201.CrossRefPubMed Al-Marzouki S, Roberts I, Evans S, Marshall T. Selective reporting in clinical trials: analysis of trial protocols accepted by the Lancet. Lancet. 2008;372:201.CrossRefPubMed
14.
go back to reference Ross JS, Mulvey GK, Hines EM, Nissen SE, Krumholz HM. Trial publication after registration in ClinicalTrials.Gov: a cross-sectional analysis. PLoS Med. 2009;6:e1000144.CrossRefPubMedPubMedCentral Ross JS, Mulvey GK, Hines EM, Nissen SE, Krumholz HM. Trial publication after registration in ClinicalTrials.Gov: a cross-sectional analysis. PLoS Med. 2009;6:e1000144.CrossRefPubMedPubMedCentral
15.
go back to reference Hahn S, Williamson PR, Hutton JL. Investigation of within-study selective reporting in clinical research: follow-up of applications submitted to a local research ethics committee. J Eval Clin Pract. 2002;8:353–9.CrossRefPubMed Hahn S, Williamson PR, Hutton JL. Investigation of within-study selective reporting in clinical research: follow-up of applications submitted to a local research ethics committee. J Eval Clin Pract. 2002;8:353–9.CrossRefPubMed
16.
go back to reference Dwan K, Altman DG, Arnaiz JA, Bloom J, Chan AW, Cronin E, et al. Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS One. 2008;3:e3081.CrossRefPubMedPubMedCentral Dwan K, Altman DG, Arnaiz JA, Bloom J, Chan AW, Cronin E, et al. Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS One. 2008;3:e3081.CrossRefPubMedPubMedCentral
17.
go back to reference Liu JP, Han M, Li XX, Mu YJ, Lewith G, Wang YY, et al. Prospective registration, bias risk and outcome-reporting bias in randomised clinical trials of traditional Chinese medicine: an empirical methodological study. BMJ Open. 2013;3:e002968.CrossRefPubMedPubMedCentral Liu JP, Han M, Li XX, Mu YJ, Lewith G, Wang YY, et al. Prospective registration, bias risk and outcome-reporting bias in randomised clinical trials of traditional Chinese medicine: an empirical methodological study. BMJ Open. 2013;3:e002968.CrossRefPubMedPubMedCentral
20.
go back to reference Chan AW, Altman DG. Identifying outcome reporting bias in randomised trials on PubMed: review of publications and survey of authors. BMJ. 2005;330:753.CrossRefPubMedPubMedCentral Chan AW, Altman DG. Identifying outcome reporting bias in randomised trials on PubMed: review of publications and survey of authors. BMJ. 2005;330:753.CrossRefPubMedPubMedCentral
21.
go back to reference Mathieu S, Boutron I, Moher D, Altman DG, Ravaud P. Comparison of registered and published primary outcomes in randomized controlled trials. JAMA. 2009;302:977–84.CrossRefPubMed Mathieu S, Boutron I, Moher D, Altman DG, Ravaud P. Comparison of registered and published primary outcomes in randomized controlled trials. JAMA. 2009;302:977–84.CrossRefPubMed
22.
go back to reference Hannink G, Gooszen HG, Rovers MM. Comparison of registered and published primary outcomes in randomized clinical trials of surgical interventions. Ann Surg. 2013;257:818–23.CrossRefPubMed Hannink G, Gooszen HG, Rovers MM. Comparison of registered and published primary outcomes in randomized clinical trials of surgical interventions. Ann Surg. 2013;257:818–23.CrossRefPubMed
23.
go back to reference Chan AW, Krleza-Jeric K, Schmid I, Altman DG. Outcome reporting bias in randomized trials funded by the Canadian Institutes of Health Research. CMAJ. 2004;171:735–40.CrossRefPubMedPubMedCentral Chan AW, Krleza-Jeric K, Schmid I, Altman DG. Outcome reporting bias in randomized trials funded by the Canadian Institutes of Health Research. CMAJ. 2004;171:735–40.CrossRefPubMedPubMedCentral
25.
go back to reference Wager E, Williams P, Project overcome failure to publish negative findings consortium. “Hardly worth the effort”? Medical journals’ policies and their editors’ and publishers’ views on trial registration and publication bias: quantitative and qualitative study. BMJ. 2013;347:f5248.CrossRefPubMedPubMedCentral Wager E, Williams P, Project overcome failure to publish negative findings consortium. “Hardly worth the effort”? Medical journals’ policies and their editors’ and publishers’ views on trial registration and publication bias: quantitative and qualitative study. BMJ. 2013;347:f5248.CrossRefPubMedPubMedCentral
26.
go back to reference van de Wetering FT, Scholten RJ, Haring T, Clarke M, Hooft L. Trial registration numbers are underreported in biomedical publications. PLoS One. 2012;7:e49599.CrossRefPubMedPubMedCentral van de Wetering FT, Scholten RJ, Haring T, Clarke M, Hooft L. Trial registration numbers are underreported in biomedical publications. PLoS One. 2012;7:e49599.CrossRefPubMedPubMedCentral
27.
go back to reference Smyth RM, Kirkham JJ, Jacoby A, Altman DG, Gamble C, Williamson PR. Frequency and reasons for outcome reporting bias in clinical trials: interviews with trialists. BMJ. 2011;342:c7153.CrossRefPubMedPubMedCentral Smyth RM, Kirkham JJ, Jacoby A, Altman DG, Gamble C, Williamson PR. Frequency and reasons for outcome reporting bias in clinical trials: interviews with trialists. BMJ. 2011;342:c7153.CrossRefPubMedPubMedCentral
28.
go back to reference You B, Gan HK, Pond G, Chen EX. Consistency in the analysis and reporting of primary end points in oncology randomized controlled trials from registration to publication: a systematic review. J Clin Oncol. 2012;30:210–6.CrossRefPubMed You B, Gan HK, Pond G, Chen EX. Consistency in the analysis and reporting of primary end points in oncology randomized controlled trials from registration to publication: a systematic review. J Clin Oncol. 2012;30:210–6.CrossRefPubMed
29.
go back to reference Korevaar DA, Ochodo EA, Bossuyt PM, Hooft L. Publication and Reporting of Test Accuracy Studies Registered in ClinicalTrials.gov. Clin Chem. 2014;60:651–9.CrossRefPubMed Korevaar DA, Ochodo EA, Bossuyt PM, Hooft L. Publication and Reporting of Test Accuracy Studies Registered in ClinicalTrials.gov. Clin Chem. 2014;60:651–9.CrossRefPubMed
Metadata
Title
Empirical evidence for outcome reporting bias in randomized clinical trials of acupuncture: comparison of registered records and subsequent publications
Publication date
01-12-2015
Published in
Trials / Issue 1/2015
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-014-0545-5

Other articles of this Issue 1/2015

Trials 1/2015 Go to the issue