Skip to main content
Top
Published in: Breast Cancer Research 1/2018

Open Access 01-12-2018 | Research Article

MRI-based response patterns during neoadjuvant chemotherapy can predict pathological (complete) response in patients with breast cancer

Authors: Briete Goorts, Kelly M. A. Dreuning, Janneke B. Houwers, Loes F. S. Kooreman, Evert-Jan G. Boerma, Ritse M. Mann, Marc B. I. Lobbes, Marjolein L. Smidt

Published in: Breast Cancer Research | Issue 1/2018

Login to get access

Abstract

Background

The main purpose was to investigate the correlation between magnetic resonance imaging (MRI)-based response patterns halfway through neoadjuvant chemotherapy and immunotherapy (NAC) and pathological tumor response in patients with breast cancer. Secondary purposes were to compare the predictive value of MRI-based response patterns measured halfway through NAC and after NAC and to measure interobserver variability.

Methods

All consecutive patients treated with NAC for primary invasive breast cancer from 2012 to 2015 and who underwent breast MRI before, halfway through (and after) NAC were included. All breast tumors were reassessed on MRI by two experienced breast radiologists and classified into six patterns: type 0 (complete radiologic response); type 1 (concentric shrinkage); type 2 (crumbling); type 3 (diffuse enhancement); type 4 (stable disease); type 5 (progressive disease). Percentages of tumors showing pathological complete response (pCR), > 50% tumor reduction and > 50% tumor diameter reduction per MRI-based response pattern were calculated. Correlation between MRI-based response patterns and pathological tumor reduction was studied with Pearson’s correlation coefficient, and interobserver agreement was tested with Cohen’s Kappa.

Results

Patients (n = 76; mean age 53, range 29–72 years) with 80 tumors (4 bilateral) were included. There was significant correlation between these MRI-based response patterns halfway through NAC and tumor reduction on pathology assessment (reader 1 r = 0.33; p = 0.003 and reader 2 r = 0.45; p < 0.001). Type-0, type-1 or type-2 patterns halfway through NAC showed highest tumor reduction rates on pathology assessment, with > 50% tumor reduction in 90%, 78% and 65% of cases, respectively. In 83% of tumors with type 0 halfway through NAC, pathology assessment showed pCR. There was no significant correlation between MRI-based response patterns after NAC and tumor reduction rates on pathology assessment (reader 1 r = − 0.17; p = 0.145 and reader 2 r = − 0.17; p = 0.146). In 41% of tumors with type 0 after NAC, pathology assessment showed pCR.

Conclusion

MRI-based response patterns halfway through NAC can predict pathologic response more accurately than MRI-based response patterns after NAC. Complete radiological response halfway NAC is associated with 83% pCR, while complete radiological response after NAC seems to be correct in only 41% of cases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kaufmann M, Hortobagyi GN, Goldhirsch A, Scholl S, Makris A, Valagussa P, Blohmer JU, Eiermann W, Jackesz R, Jonat W, et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update. J Clin Oncol. 2006;24(12):1940–9.CrossRefPubMed Kaufmann M, Hortobagyi GN, Goldhirsch A, Scholl S, Makris A, Valagussa P, Blohmer JU, Eiermann W, Jackesz R, Jonat W, et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update. J Clin Oncol. 2006;24(12):1940–9.CrossRefPubMed
2.
go back to reference Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–81.CrossRefPubMed Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–81.CrossRefPubMed
3.
go back to reference Goorts B, van Nijnatten TJ, de Munck L, Moossdorff M, Heuts EM, de Boer M, Lobbes MB, Smidt ML. Clinical tumor stage is the most important predictor of pathological complete response rate after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat. 2017;163(1):83–91.CrossRefPubMedPubMedCentral Goorts B, van Nijnatten TJ, de Munck L, Moossdorff M, Heuts EM, de Boer M, Lobbes MB, Smidt ML. Clinical tumor stage is the most important predictor of pathological complete response rate after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat. 2017;163(1):83–91.CrossRefPubMedPubMedCentral
4.
go back to reference Chen JH, Bahri S, Mehta RS, Carpenter PM, McLaren CE, Chen WP, Fwu PT, Hsiang DJ, Lane KT, Butler JA, et al. Impact of factors affecting the residual tumor size diagnosed by MRI following neoadjuvant chemotherapy in comparison to pathology. J Surg Oncol. 2014;109(2):158–67.CrossRefPubMed Chen JH, Bahri S, Mehta RS, Carpenter PM, McLaren CE, Chen WP, Fwu PT, Hsiang DJ, Lane KT, Butler JA, et al. Impact of factors affecting the residual tumor size diagnosed by MRI following neoadjuvant chemotherapy in comparison to pathology. J Surg Oncol. 2014;109(2):158–67.CrossRefPubMed
5.
go back to reference Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1–22.CrossRefPubMed Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1–22.CrossRefPubMed
6.
go back to reference Smith IC, Heys SD, Hutcheon AW, Miller ID, Payne S, Gilbert FJ, Ah-See AK, Eremin O, Walker LG, Sarkar TK, et al. Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol. 2002;20(6):1456–66.CrossRefPubMed Smith IC, Heys SD, Hutcheon AW, Miller ID, Payne S, Gilbert FJ, Ah-See AK, Eremin O, Walker LG, Sarkar TK, et al. Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol. 2002;20(6):1456–66.CrossRefPubMed
7.
go back to reference Lobbes MB, Prevos R, Smidt M, Tjan-Heijnen VC, van Goethem M, Schipper R, Beets-Tan RG, Wildberger JE. The role of magnetic resonance imaging in assessing residual disease and pathologic complete response in breast cancer patients receiving neoadjuvant chemotherapy: a systematic review. Insights Imaging. 2013;4(2):163–75.CrossRefPubMedPubMedCentral Lobbes MB, Prevos R, Smidt M, Tjan-Heijnen VC, van Goethem M, Schipper R, Beets-Tan RG, Wildberger JE. The role of magnetic resonance imaging in assessing residual disease and pathologic complete response in breast cancer patients receiving neoadjuvant chemotherapy: a systematic review. Insights Imaging. 2013;4(2):163–75.CrossRefPubMedPubMedCentral
8.
go back to reference Kim TH, Kang DK, Yim H, Jung YS, Kim KS, Kang SY. Magnetic resonance imaging patterns of tumor regression after neoadjuvant chemotherapy in breast cancer patients: correlation with pathological response grading system based on tumor cellularity. J Comput Assist Tomogr. 2012;36(2):200–6.CrossRefPubMed Kim TH, Kang DK, Yim H, Jung YS, Kim KS, Kang SY. Magnetic resonance imaging patterns of tumor regression after neoadjuvant chemotherapy in breast cancer patients: correlation with pathological response grading system based on tumor cellularity. J Comput Assist Tomogr. 2012;36(2):200–6.CrossRefPubMed
9.
go back to reference Loo CE, Straver ME, Rodenhuis S, Muller SH, Wesseling J, Vrancken Peeters MJ, Gilhuijs KG. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype. J Clin Oncol 2011;29(6):660–6. Loo CE, Straver ME, Rodenhuis S, Muller SH, Wesseling J, Vrancken Peeters MJ, Gilhuijs KG. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype. J Clin Oncol 2011;29(6):660–6.
10.
go back to reference Hylton NM, Blume JD, Bernreuter WK, Pisano ED, Rosen MA, Morris EA, Weatherall PT, Lehman CD, Newstead GM, Polin S, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy–results from ACRIN 6657/I-SPY TRIAL. Radiology. 2012;263(3):663–72.CrossRefPubMedPubMedCentral Hylton NM, Blume JD, Bernreuter WK, Pisano ED, Rosen MA, Morris EA, Weatherall PT, Lehman CD, Newstead GM, Polin S, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy–results from ACRIN 6657/I-SPY TRIAL. Radiology. 2012;263(3):663–72.CrossRefPubMedPubMedCentral
12.
go back to reference Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–56.CrossRefPubMed Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–56.CrossRefPubMed
13.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.CrossRefPubMed Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.CrossRefPubMed
14.
go back to reference Ballesio L, Gigli S, Di Pastena F, Giraldi G, Manganaro L, Anastasi E, Catalano C. Magnetic resonance imaging tumor regression shrinkage patterns after neoadjuvant chemotherapy in patients with locally advanced breast cancer: Correlation with tumor biological subtypes and pathological response after therapy. Tumour Biol. 2017;39(3):1010428317694540.CrossRefPubMed Ballesio L, Gigli S, Di Pastena F, Giraldi G, Manganaro L, Anastasi E, Catalano C. Magnetic resonance imaging tumor regression shrinkage patterns after neoadjuvant chemotherapy in patients with locally advanced breast cancer: Correlation with tumor biological subtypes and pathological response after therapy. Tumour Biol. 2017;39(3):1010428317694540.CrossRefPubMed
15.
go back to reference Golden DI, Lipson JA, Telli ML, Ford JM, Rubin DL. Dynamic contrast-enhanced MRI-based biomarkers of therapeutic response in triple-negative breast cancer. J Am Med Inform Assoc. 2013;20(6):1059–66.CrossRefPubMedPubMedCentral Golden DI, Lipson JA, Telli ML, Ford JM, Rubin DL. Dynamic contrast-enhanced MRI-based biomarkers of therapeutic response in triple-negative breast cancer. J Am Med Inform Assoc. 2013;20(6):1059–66.CrossRefPubMedPubMedCentral
16.
go back to reference Mukhtar RA, Yau C, Rosen M, Tandon VJ, I-Spy T, Investigators A, Hylton N, Esserman LJ. Clinically meaningful tumor reduction rates vary by prechemotherapy MRI phenotype and tumor subtype in the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Ann Surg Oncol. 2013;20(12):3823–30.CrossRefPubMedPubMedCentral Mukhtar RA, Yau C, Rosen M, Tandon VJ, I-Spy T, Investigators A, Hylton N, Esserman LJ. Clinically meaningful tumor reduction rates vary by prechemotherapy MRI phenotype and tumor subtype in the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Ann Surg Oncol. 2013;20(12):3823–30.CrossRefPubMedPubMedCentral
Metadata
Title
MRI-based response patterns during neoadjuvant chemotherapy can predict pathological (complete) response in patients with breast cancer
Authors
Briete Goorts
Kelly M. A. Dreuning
Janneke B. Houwers
Loes F. S. Kooreman
Evert-Jan G. Boerma
Ritse M. Mann
Marc B. I. Lobbes
Marjolein L. Smidt
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2018
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-018-0950-x

Other articles of this Issue 1/2018

Breast Cancer Research 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine