Skip to main content
Top
Published in: Breast Cancer Research 1/2017

Open Access 01-12-2017 | Research Article

Serum thymidine kinase 1 activity as a pharmacodynamic marker of cyclin-dependent kinase 4/6 inhibition in patients with early-stage breast cancer receiving neoadjuvant palbociclib

Authors: Nusayba Bagegni, Shana Thomas, Ning Liu, Jingqin Luo, Jeremy Hoog, Donald W. Northfelt, Matthew P. Goetz, Andres Forero, Mattias Bergqvist, Jakob Karen, Magnus Neumüller, Edward M. Suh, Zhanfang Guo, Kiran Vij, Souzan Sanati, Matthew Ellis, Cynthia X. Ma

Published in: Breast Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Thymidine kinase 1 (TK1) is a cell cycle-regulated enzyme with peak expression in the S phase during DNA synthesis, and it is an attractive biomarker of cell proliferation. Serum TK1 activity has demonstrated prognostic value in patients with early-stage breast cancer. Because cyclin-dependent kinase 4/6 (CDK4/6) inhibitors prevent G1/S transition, we hypothesized that serum TK1 could be a biomarker for CDK4/6 inhibitors. We examined the drug-induced change in serum TK1 as well as its correlation with change in tumor Ki-67 levels in patients enrolled in the NeoPalAna trial (ClinicalTrials.gov identifier NCT01723774).

Methods

Patients with clinical stage II/III estrogen receptor-positive (ER+)/HER2-negative breast cancer enrolled in the NeoPalAna trial received an initial 4 weeks of anastrozole, followed by palbociclib on cycle 1, day 1 (C1D1) for four 28-day cycles, unless C1D15 tumor Ki-67 was > 10%, in which case patients went off study owing to inadequate response. Surgery occurred following 3–5 weeks of washout from the last dose of palbociclib, except in eight patients who received palbociclib (cycle 5) continuously until surgery. Serum TK1 activity was determined at baseline, C1D1, C1D15, and time of surgery, and we found that it was correlated with tumor Ki-67 and TK1 messenger RNA (mRNA) levels.

Results

Despite a significant drop in tumor Ki-67 with anastrozole monotherapy, there was no statistically significant change in TK1 activity. However, a striking reduction in TK1 activity was observed 2 weeks after initiation of palbociclib (C1D15), which then rose significantly with palbociclib washout. At C1D15, TK1 activity was below the detection limit (<20 DiviTum units per liter Du/L) in 92% of patients, indicating a profound effect of palbociclib. There was high concordance, at 89.8% (95% CI: 79.2% - 96.2%), between changes in serum TK1 and tumor Ki-67 in the same direction from C1D1 to C1D15 and from C1D15 to surgery time points. The sensitivity and specificity for the tumor Ki-67-based response by palbociclib-induced decrease in serum TK1 were 94.1% (95% CI 86.2% - 100%) and 84% (95% CI 69.6% -98.4%), respectively. The κ-statistic was 0.76 (p < 0.001) between TK1 and Ki-67, indicating substantial agreement.

Conclusions

Serum TK1 activity is a promising pharmacodynamic marker of palbociclib in ER+ breast cancer, and its value in predicting response to CDK4/6 inhibitors warrants further investigation.

Trial registration

ClinicalTrials.gov, NCT01723774. Registered on 6 November 2012.
Appendix
Available only for authorised users
Literature
1.
go back to reference Welin M, Kosinska U, Mikkelsen NE, Carnrot C, Zhu C, Wang L, Eriksson S, Munch-Petersen B, Eklund H. Structures of thymidine kinase 1 of human and mycoplasmic origin. Proc Natl Acad Sci U S A. 2004;101(52):17970–5.CrossRefPubMedPubMedCentral Welin M, Kosinska U, Mikkelsen NE, Carnrot C, Zhu C, Wang L, Eriksson S, Munch-Petersen B, Eklund H. Structures of thymidine kinase 1 of human and mycoplasmic origin. Proc Natl Acad Sci U S A. 2004;101(52):17970–5.CrossRefPubMedPubMedCentral
2.
go back to reference Bello LJ. Regulation of thymidine kinase synthesis in human cells. Exp Cell Res. 1974;89(2):263–74.CrossRefPubMed Bello LJ. Regulation of thymidine kinase synthesis in human cells. Exp Cell Res. 1974;89(2):263–74.CrossRefPubMed
3.
go back to reference Munch-Petersen B, Tyrsted G. Induction of thymidine kinases in phytohaemagglutinin-stimulated human lymphocytes. Biochim Biophys Acta. 1977;478(3):364–75.CrossRefPubMed Munch-Petersen B, Tyrsted G. Induction of thymidine kinases in phytohaemagglutinin-stimulated human lymphocytes. Biochim Biophys Acta. 1977;478(3):364–75.CrossRefPubMed
4.
go back to reference Sherley JL, Kelly TJ. Regulation of human thymidine kinase during the cell cycle. J Biol Chem. 1988;263(17):8350–8.PubMed Sherley JL, Kelly TJ. Regulation of human thymidine kinase during the cell cycle. J Biol Chem. 1988;263(17):8350–8.PubMed
5.
go back to reference Ke PY, Chang ZF. Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/cyclosome-CDH1-mediated pathway. Mol Cell Biol. 2004;24(2):514–26.CrossRefPubMedPubMedCentral Ke PY, Chang ZF. Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/cyclosome-CDH1-mediated pathway. Mol Cell Biol. 2004;24(2):514–26.CrossRefPubMedPubMedCentral
6.
go back to reference Nisman B, Allweis T, Kadouri L, Mali B, Hamburger T, Baras M, Gronowitz S, Peretz T. Comparison of diagnostic and prognostic performance of two assays measuring thymidine kinase 1 activity in serum of breast cancer patients. Clin Chem Lab Med. 2013;51(2):439–47.CrossRefPubMed Nisman B, Allweis T, Kadouri L, Mali B, Hamburger T, Baras M, Gronowitz S, Peretz T. Comparison of diagnostic and prognostic performance of two assays measuring thymidine kinase 1 activity in serum of breast cancer patients. Clin Chem Lab Med. 2013;51(2):439–47.CrossRefPubMed
7.
go back to reference Nisman B, Allweis T, Kaduri L, Maly B, Gronowitz S, Hamburger T, Peretz T. Serum thymidine kinase 1 activity in breast cancer. Cancer Biomark. 2010;7(2):65–72.CrossRefPubMed Nisman B, Allweis T, Kaduri L, Maly B, Gronowitz S, Hamburger T, Peretz T. Serum thymidine kinase 1 activity in breast cancer. Cancer Biomark. 2010;7(2):65–72.CrossRefPubMed
8.
go back to reference Nisman B, Appelbaum L, Yutkin V, Nechushtan H, Hubert A, Uziely B, Pode D, Peretz T. Serum thymidine kinase 1 activity following nephrectomy for renal cell carcinoma and radiofrequency ablation of metastases to lung and liver. Anticancer Res. 2016;36(4):1791–7.PubMed Nisman B, Appelbaum L, Yutkin V, Nechushtan H, Hubert A, Uziely B, Pode D, Peretz T. Serum thymidine kinase 1 activity following nephrectomy for renal cell carcinoma and radiofrequency ablation of metastases to lung and liver. Anticancer Res. 2016;36(4):1791–7.PubMed
9.
go back to reference Nisman B, Nechushtan H, Biran H, Gantz-Sorotsky H, Peled N, Gronowitz S, Peretz T. Serum thymidine kinase 1 activity in the prognosis and monitoring of chemotherapy in lung cancer patients: a brief report. J Thorac Oncol. 2014;9(10):1568–72.CrossRefPubMed Nisman B, Nechushtan H, Biran H, Gantz-Sorotsky H, Peled N, Gronowitz S, Peretz T. Serum thymidine kinase 1 activity in the prognosis and monitoring of chemotherapy in lung cancer patients: a brief report. J Thorac Oncol. 2014;9(10):1568–72.CrossRefPubMed
10.
go back to reference Stelmach P, Błoński JZ, Wawrzyniak E, Schweiger PE, Wilandt A, Majak PE, Robak T. Prognostic value of thymidine kinase activity in patients with chronic lymphocytic leukemia. Postepy Hig Med Dosw (Online). 2016;70:1321–30. Stelmach P, Błoński JZ, Wawrzyniak E, Schweiger PE, Wilandt A, Majak PE, Robak T. Prognostic value of thymidine kinase activity in patients with chronic lymphocytic leukemia. Postepy Hig Med Dosw (Online). 2016;70:1321–30.
11.
go back to reference DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, Lal P, Feldman M, Zhang P, Colameco C, et al. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res. 2015;21(5):995–1001.CrossRefPubMed DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, Lal P, Feldman M, Zhang P, Colameco C, et al. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res. 2015;21(5):995–1001.CrossRefPubMed
12.
go back to reference Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, Campone M, Blackwell KL, André F, Winer EP, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375(18):1738–48.CrossRefPubMed Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, Campone M, Blackwell KL, André F, Winer EP, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375(18):1738–48.CrossRefPubMed
13.
go back to reference Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, Colleoni M, DeMichele A, Loi S, Verma S, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–39.CrossRefPubMed Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, Colleoni M, DeMichele A, Loi S, Verma S, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–39.CrossRefPubMed
14.
go back to reference Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36.CrossRefPubMed Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36.CrossRefPubMed
15.
go back to reference Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, Papadopoulos KP, Beeram M, Rasco DW, Hilton JF, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6(7):740–53.CrossRefPubMed Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, Papadopoulos KP, Beeram M, Rasco DW, Hilton JF, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6(7):740–53.CrossRefPubMed
16.
go back to reference Sledge Jr GW, Toi M, Neven P, Sohn J, Inoue K, Pivot X, Burdaeva O, Okera M, Masuda N, Kaufman PA, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2− advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84.CrossRefPubMed Sledge Jr GW, Toi M, Neven P, Sohn J, Inoue K, Pivot X, Burdaeva O, Okera M, Masuda N, Kaufman PA, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2− advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84.CrossRefPubMed
17.
go back to reference Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18(1):17.CrossRefPubMedPubMedCentral Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18(1):17.CrossRefPubMedPubMedCentral
18.
go back to reference O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13(7):417–30.CrossRefPubMed O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13(7):417–30.CrossRefPubMed
19.
go back to reference Ma CX, Gao F, Luo J, Northfelt DW, Goetz MP, Forero A, Hoog J, Naughton M, Ademuyiwa F, Suresh R, et al. NeoPalAna: neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor-positive breast cancer. Clin Cancer Res. 2017;23(15):4055–65.CrossRefPubMed Ma CX, Gao F, Luo J, Northfelt DW, Goetz MP, Forero A, Hoog J, Naughton M, Ademuyiwa F, Suresh R, et al. NeoPalAna: neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor-positive breast cancer. Clin Cancer Res. 2017;23(15):4055–65.CrossRefPubMed
20.
go back to reference Ellis MJ, Suman VJ, Hoog J, Goncalves R, Sanati S, Creighton CJ, DeSchryver K, Crouch E, Brink A, Watson M, et al. Ki67 proliferation index as a tool for chemotherapy decisions during and after neoadjuvant aromatase inhibitor treatment of breast cancer: results from the American College of Surgeons Oncology Group Z1031 Trial (Alliance). J Clin Oncol. 2017;35(10):1061–9.CrossRefPubMed Ellis MJ, Suman VJ, Hoog J, Goncalves R, Sanati S, Creighton CJ, DeSchryver K, Crouch E, Brink A, Watson M, et al. Ki67 proliferation index as a tool for chemotherapy decisions during and after neoadjuvant aromatase inhibitor treatment of breast cancer: results from the American College of Surgeons Oncology Group Z1031 Trial (Alliance). J Clin Oncol. 2017;35(10):1061–9.CrossRefPubMed
21.
go back to reference Bjohle J, Bergqvist J, Gronowitz JS, Johansson H, Carlsson L, Einbeigi Z, Linderholm B, Loman N, Malmberg M, Soderberg M, et al. Serum thymidine kinase activity compared with CA 15-3 in locally advanced and metastatic breast cancer within a randomized trial. Breast Cancer Res Treat. 2013;139(3):751–8.CrossRefPubMed Bjohle J, Bergqvist J, Gronowitz JS, Johansson H, Carlsson L, Einbeigi Z, Linderholm B, Loman N, Malmberg M, Soderberg M, et al. Serum thymidine kinase activity compared with CA 15-3 in locally advanced and metastatic breast cancer within a randomized trial. Breast Cancer Res Treat. 2013;139(3):751–8.CrossRefPubMed
22.
go back to reference Bland JM, Altman DG. Statistics notes: Calculating correlation coefficients with repeated observations: Part 1—correlation within subjects. BMJ. 1995;310(6977):446.CrossRefPubMedPubMedCentral Bland JM, Altman DG. Statistics notes: Calculating correlation coefficients with repeated observations: Part 1—correlation within subjects. BMJ. 1995;310(6977):446.CrossRefPubMedPubMedCentral
23.
24.
go back to reference Berghuis AM, Koffijberg H, Prakash J, Terstappen LW, IJzerman MJ. Detecting blood-based biomarkers in metastatic breast cancer: a systematic review of their current status and clinical utility. Int J Mol Sci. 2017;18(2):363.CrossRefPubMedCentral Berghuis AM, Koffijberg H, Prakash J, Terstappen LW, IJzerman MJ. Detecting blood-based biomarkers in metastatic breast cancer: a systematic review of their current status and clinical utility. Int J Mol Sci. 2017;18(2):363.CrossRefPubMedCentral
25.
go back to reference Cappelletti V, Appierto V, Tiberio P, Fina E, Callari M, Daidone MG. Circulating biomarkers for prediction of treatment response. J Natl Cancer Inst Monogr. 2015;2015(51):60–3.CrossRefPubMed Cappelletti V, Appierto V, Tiberio P, Fina E, Callari M, Daidone MG. Circulating biomarkers for prediction of treatment response. J Natl Cancer Inst Monogr. 2015;2015(51):60–3.CrossRefPubMed
26.
27.
go back to reference Aufderklamm S, Todenhofer T, Gakis G, Kruck S, Hennenlotter J, Stenzl A, Schwentner C. Thymidine kinase and cancer monitoring. Cancer Lett. 2012;316(1):6–10.CrossRefPubMed Aufderklamm S, Todenhofer T, Gakis G, Kruck S, Hennenlotter J, Stenzl A, Schwentner C. Thymidine kinase and cancer monitoring. Cancer Lett. 2012;316(1):6–10.CrossRefPubMed
28.
go back to reference Mao Y, Wu J, Wang N, He L, Wu C, He Q, Skog S. A comparative study: immunohistochemical detection of cytosolic thymidine kinase and proliferating cell nuclear antigen in breast cancer. Cancer Invest. 2002;20(7-8):922–31.CrossRefPubMed Mao Y, Wu J, Wang N, He L, Wu C, He Q, Skog S. A comparative study: immunohistochemical detection of cytosolic thymidine kinase and proliferating cell nuclear antigen in breast cancer. Cancer Invest. 2002;20(7-8):922–31.CrossRefPubMed
29.
go back to reference He Q, Zou L, Zhang PA, Lui JX, Skog S, Fornander T. The clinical significance of thymidine kinase 1 measurement in serum of breast cancer patients using anti-TK1 antibody. Int J Biol Markers. 2000;15(2):139–46.PubMed He Q, Zou L, Zhang PA, Lui JX, Skog S, Fornander T. The clinical significance of thymidine kinase 1 measurement in serum of breast cancer patients using anti-TK1 antibody. Int J Biol Markers. 2000;15(2):139–46.PubMed
30.
go back to reference He Q, Fornander T, Johansson H, Johansson U, Hu GZ, Rutqvist LE, Skog S. Thymidine kinase 1 in serum predicts increased risk of distant or loco-regional recurrence following surgery in patients with early breast cancer. Anticancer Res. 2006;26(6C):4753–9.PubMed He Q, Fornander T, Johansson H, Johansson U, Hu GZ, Rutqvist LE, Skog S. Thymidine kinase 1 in serum predicts increased risk of distant or loco-regional recurrence following surgery in patients with early breast cancer. Anticancer Res. 2006;26(6C):4753–9.PubMed
31.
go back to reference Korkmaz T, Seber S, Okutur K, Basaran G, Yumuk F, Dane F, Ones T, Polat O, Madenci OC, Demir G, et al. Serum thymidine kinase 1 levels correlates with FDG uptake and prognosis in patients with non small cell lung cancer. Biomarkers. 2013;18(1):88–94.CrossRefPubMed Korkmaz T, Seber S, Okutur K, Basaran G, Yumuk F, Dane F, Ones T, Polat O, Madenci OC, Demir G, et al. Serum thymidine kinase 1 levels correlates with FDG uptake and prognosis in patients with non small cell lung cancer. Biomarkers. 2013;18(1):88–94.CrossRefPubMed
32.
go back to reference Lim JS, Turner NC, Yap TA. CDK4/6 inhibitors: promising opportunities beyond breast cancer. Cancer Discov. 2016;6(7):697–9.CrossRefPubMed Lim JS, Turner NC, Yap TA. CDK4/6 inhibitors: promising opportunities beyond breast cancer. Cancer Discov. 2016;6(7):697–9.CrossRefPubMed
33.
go back to reference Turner NC, Ro J, André F, Loi S, Verma S, Iwata H, Harbeck N, Loibl S, Huang Bartlett C, Zhang K, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373(3):209–19.CrossRefPubMed Turner NC, Ro J, André F, Loi S, Verma S, Iwata H, Harbeck N, Loibl S, Huang Bartlett C, Zhang K, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373(3):209–19.CrossRefPubMed
34.
go back to reference Prall OW, Sarcevic B, Musgrove EA, Watts CK, Sutherland RL. Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem. 1997;272(16):10882–94.CrossRefPubMed Prall OW, Sarcevic B, Musgrove EA, Watts CK, Sutherland RL. Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem. 1997;272(16):10882–94.CrossRefPubMed
35.
go back to reference Watts CK, Sweeney KJ, Warlters A, Musgrove EA, Sutherland RL. Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cancer cells. Breast Cancer Res Treat. 1994;31(1):95–105.CrossRefPubMed Watts CK, Sweeney KJ, Warlters A, Musgrove EA, Sutherland RL. Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cancer cells. Breast Cancer Res Treat. 1994;31(1):95–105.CrossRefPubMed
Metadata
Title
Serum thymidine kinase 1 activity as a pharmacodynamic marker of cyclin-dependent kinase 4/6 inhibition in patients with early-stage breast cancer receiving neoadjuvant palbociclib
Authors
Nusayba Bagegni
Shana Thomas
Ning Liu
Jingqin Luo
Jeremy Hoog
Donald W. Northfelt
Matthew P. Goetz
Andres Forero
Mattias Bergqvist
Jakob Karen
Magnus Neumüller
Edward M. Suh
Zhanfang Guo
Kiran Vij
Souzan Sanati
Matthew Ellis
Cynthia X. Ma
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2017
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-017-0913-7

Other articles of this Issue 1/2017

Breast Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine