Skip to main content
Top
Published in: Breast Cancer Research 1/2016

Open Access 01-12-2016 | Research article

Mammographic density assessed on paired raw and processed digital images and on paired screen-film and digital images across three mammography systems

Authors: Anya Burton, Graham Byrnes, Jennifer Stone, Rulla M. Tamimi, John Heine, Celine Vachon, Vahit Ozmen, Ana Pereira, Maria Luisa Garmendia, Christopher Scott, John H. Hipwell, Caroline Dickens, Joachim Schüz, Mustafa Erkin Aribal, Kimberly Bertrand, Ava Kwong, Graham G. Giles, John Hopper, Beatriz Pérez Gómez, Marina Pollán, Soo-Hwang Teo, Shivaani Mariapun, Nur Aishah Mohd Taib, Martín Lajous, Ruy Lopez-Riduara, Megan Rice, Isabelle Romieu, Anath Arzee Flugelman, Giske Ursin, Samera Qureshi, Huiyan Ma, Eunjung Lee, Reza Sirous, Mehri Sirous, Jong Won Lee, Jisun Kim, Dorria Salem, Rasha Kamal, Mikael Hartman, Hui Miao, Kee-Seng Chia, Chisato Nagata, Sudhir Vinayak, Rose Ndumia, Carla H. van Gils, Johanna O. P. Wanders, Beata Peplonska, Agnieszka Bukowska, Steve Allen, Sarah Vinnicombe, Sue Moss, Anna M. Chiarelli, Linda Linton, Gertraud Maskarinec, Martin J. Yaffe, Norman F. Boyd, Isabel dos-Santos-Silva, Valerie A. McCormack

Published in: Breast Cancer Research | Issue 1/2016

Login to get access

Abstract

Background

Inter-women and intra-women comparisons of mammographic density (MD) are needed in research, clinical and screening applications; however, MD measurements are influenced by mammography modality (screen film/digital) and digital image format (raw/processed). We aimed to examine differences in MD assessed on these image types.

Methods

We obtained 1294 pairs of images saved in both raw and processed formats from Hologic and General Electric (GE) direct digital systems and a Fuji computed radiography (CR) system, and 128 screen-film and processed CR-digital pairs from consecutive screening rounds. Four readers performed Cumulus-based MD measurements (n = 3441), with each image pair read by the same reader. Multi-level models of square-root percent MD were fitted, with a random intercept for woman, to estimate processed–raw MD differences.

Results

Breast area did not differ in processed images compared with that in raw images, but the percent MD was higher, due to a larger dense area (median 28.5 and 25.4 cm2 respectively, mean √dense area difference 0.44 cm (95% CI: 0.36, 0.52)). This difference in √dense area was significant for direct digital systems (Hologic 0.50 cm (95% CI: 0.39, 0.61), GE 0.56 cm (95% CI: 0.42, 0.69)) but not for Fuji CR (0.06 cm (95% CI: −0.10, 0.23)). Additionally, within each system, reader-specific differences varied in magnitude and direction (p < 0.001). Conversion equations revealed differences converged to zero with increasing dense area. MD differences between screen-film and processed digital on the subsequent screening round were consistent with expected time-related MD declines.

Conclusions

MD was slightly higher when measured on processed than on raw direct digital mammograms. Comparisons of MD on these image formats should ideally control for this non-constant and reader-specific difference.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356:227–36.CrossRefPubMed Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356:227–36.CrossRefPubMed
2.
go back to reference Warwick J, Birke H, Stone J, Warren RM, Pinney E, Brentnall AR, et al. Mammographic breast density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: findings from the placebo arm of the International Breast Cancer Intervention Study I. Breast Cancer Res. 2014;16:451.CrossRefPubMedPubMedCentral Warwick J, Birke H, Stone J, Warren RM, Pinney E, Brentnall AR, et al. Mammographic breast density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: findings from the placebo arm of the International Breast Cancer Intervention Study I. Breast Cancer Res. 2014;16:451.CrossRefPubMedPubMedCentral
3.
go back to reference Cuzick J, Warwick J, Pinney E, Duffy SW, Cawthorn S, Howell A, et al. Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case–control study. J Natl Cancer Inst. 2011;103:744–52.CrossRefPubMed Cuzick J, Warwick J, Pinney E, Duffy SW, Cawthorn S, Howell A, et al. Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case–control study. J Natl Cancer Inst. 2011;103:744–52.CrossRefPubMed
4.
go back to reference Schousboe JT, Kerlikowske K, Loh A, Cummings SR. Personalizing mammography by breast density and other risk factors for breast cancer: analysis of health benefits and cost-effectiveness. Ann Intern Med. 2011;155:10–20.CrossRefPubMedPubMedCentral Schousboe JT, Kerlikowske K, Loh A, Cummings SR. Personalizing mammography by breast density and other risk factors for breast cancer: analysis of health benefits and cost-effectiveness. Ann Intern Med. 2011;155:10–20.CrossRefPubMedPubMedCentral
5.
go back to reference Nickson C, Arzhaeva Y, Aitken Z, Elgindy T, Buckley M, Li M, et al. AutoDensity: an automated method to measure mammographic breast density that predicts breast cancer risk and screening outcomes. Breast Cancer Res. 2013;15:R80.CrossRefPubMedPubMedCentral Nickson C, Arzhaeva Y, Aitken Z, Elgindy T, Buckley M, Li M, et al. AutoDensity: an automated method to measure mammographic breast density that predicts breast cancer risk and screening outcomes. Breast Cancer Res. 2013;15:R80.CrossRefPubMedPubMedCentral
6.
go back to reference Nguyen TL, Aung YK, Evans CF, Yoon-Ho C, Jenkins MA, Sung J, et al. Mammographic density defined by higher than conventional brightness threshold better predicts breast cancer risk for full-field digital mammograms. Breast Cancer Res. 2015;17:142.CrossRefPubMedPubMedCentral Nguyen TL, Aung YK, Evans CF, Yoon-Ho C, Jenkins MA, Sung J, et al. Mammographic density defined by higher than conventional brightness threshold better predicts breast cancer risk for full-field digital mammograms. Breast Cancer Res. 2015;17:142.CrossRefPubMedPubMedCentral
7.
go back to reference Eng A, Gallant Z, Shepherd J, McCormack V, Li J, Dowsett M, et al. Digital mammographic density and breast cancer risk: a case–control study of six alternative density assessment methods. Breast Cancer Res. 2014;16:439.CrossRefPubMedPubMedCentral Eng A, Gallant Z, Shepherd J, McCormack V, Li J, Dowsett M, et al. Digital mammographic density and breast cancer risk: a case–control study of six alternative density assessment methods. Breast Cancer Res. 2014;16:439.CrossRefPubMedPubMedCentral
8.
go back to reference Keller BM, Chen J, Daye D, Conant EF, Kontos D. Preliminary evaluation of the publicly available Laboratory for Breast Radiodensity Assessment (LIBRA) software tool: comparison of fully automated area and volumetric density measures in a case–control study with digital mammography. Breast Cancer Res. 2015;17:117.CrossRefPubMedPubMedCentral Keller BM, Chen J, Daye D, Conant EF, Kontos D. Preliminary evaluation of the publicly available Laboratory for Breast Radiodensity Assessment (LIBRA) software tool: comparison of fully automated area and volumetric density measures in a case–control study with digital mammography. Breast Cancer Res. 2015;17:117.CrossRefPubMedPubMedCentral
9.
go back to reference Woolcott CG, Conroy SM, Nagata C, Ursin G, Vachon CM, Yaffe MJ, et al. Methods for assessing and representing mammographic density: an analysis of 4 case–control studies. Am J Epidemiol. 2014;179:236–44.CrossRefPubMed Woolcott CG, Conroy SM, Nagata C, Ursin G, Vachon CM, Yaffe MJ, et al. Methods for assessing and representing mammographic density: an analysis of 4 case–control studies. Am J Epidemiol. 2014;179:236–44.CrossRefPubMed
10.
go back to reference Keller BM, Nathan DL, Gavenonis SC, Chen J, Conant EF, Kontos D. Reader variability in breast density estimation from full-field digital mammograms: the effect of image postprocessing on relative and absolute measures. Acad Radiol. 2013;20:560–8.CrossRefPubMedPubMedCentral Keller BM, Nathan DL, Gavenonis SC, Chen J, Conant EF, Kontos D. Reader variability in breast density estimation from full-field digital mammograms: the effect of image postprocessing on relative and absolute measures. Acad Radiol. 2013;20:560–8.CrossRefPubMedPubMedCentral
11.
go back to reference Kuzmiak CM, Pisano ED, Cole EB, Zeng D, Burns CB, Roberto C, et al. Comparison of full-field digital mammography to screen-film mammography with respect to contrast and spatial resolution in tissue equivalent breast phantoms. Med Phys. 2005;32:3144–50.CrossRefPubMed Kuzmiak CM, Pisano ED, Cole EB, Zeng D, Burns CB, Roberto C, et al. Comparison of full-field digital mammography to screen-film mammography with respect to contrast and spatial resolution in tissue equivalent breast phantoms. Med Phys. 2005;32:3144–50.CrossRefPubMed
12.
go back to reference Vachon CM, Fowler EE, Tiffenberg G, Scott CG, Pankratz VS, Sellers TA, et al. Comparison of percent density from raw and processed full-field digital mammography data. Breast Cancer Res. 2013;15:R1.CrossRefPubMedPubMedCentral Vachon CM, Fowler EE, Tiffenberg G, Scott CG, Pankratz VS, Sellers TA, et al. Comparison of percent density from raw and processed full-field digital mammography data. Breast Cancer Res. 2013;15:R1.CrossRefPubMedPubMedCentral
13.
go back to reference Garmendia ML. Alarming weight gain in women of a post-transitional country. 2014. Garmendia ML. Alarming weight gain in women of a post-transitional country. 2014.
14.
go back to reference Kayhan A, Gurdal SO, Ozaydin N, Cabioglu N, Ozturk E, Ozcinar B, et al. Successful first round results of a Turkish breast cancer screening program with mammography in Bahcesehir, Istanbul. Asian Pac J Cancer Prev. 2014;15:1693–7.CrossRefPubMed Kayhan A, Gurdal SO, Ozaydin N, Cabioglu N, Ozturk E, Ozcinar B, et al. Successful first round results of a Turkish breast cancer screening program with mammography in Bahcesehir, Istanbul. Asian Pac J Cancer Prev. 2014;15:1693–7.CrossRefPubMed
15.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefPubMed Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefPubMed
16.
go back to reference McCormack VA, Burton A, Dos-Santos-Silva I, Hipwell JH, Dickens C, Salem D, et al. International Consortium on Mammographic Density: methodology and population diversity captured across 22 countries. Cancer Epidemiol. 2016;40:141–51.CrossRefPubMed McCormack VA, Burton A, Dos-Santos-Silva I, Hipwell JH, Dickens C, Salem D, et al. International Consortium on Mammographic Density: methodology and population diversity captured across 22 countries. Cancer Epidemiol. 2016;40:141–51.CrossRefPubMed
18.
19.
go back to reference Martin LJ, Gunasekara A, Melnichouk O, Minkin S, Peressotti C, Mawdsley G, et al. Comparison of mammographic density measured using film and digital mammograms. In: 5th International Workshop on Breast Densitometry, San Francisco, US. June 2011. Abstract. Martin LJ, Gunasekara A, Melnichouk O, Minkin S, Peressotti C, Mawdsley G, et al. Comparison of mammographic density measured using film and digital mammograms. In: 5th International Workshop on Breast Densitometry, San Francisco, US. June 2011. Abstract.
20.
go back to reference Keller BM, Nathan DL, Wang Y, Zheng Y, Gee JC, Conant EF, et al. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Med Phys. 2012;39:4903–17.CrossRefPubMedPubMedCentral Keller BM, Nathan DL, Wang Y, Zheng Y, Gee JC, Conant EF, et al. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Med Phys. 2012;39:4903–17.CrossRefPubMedPubMedCentral
21.
go back to reference McCormack VA, Perry NM, Vinnicombe SJ, Dos Santos Silva I. Changes and tracking of mammographic density in relation to Pike's model of breast tissue aging: a UK longitudinal study. Int J Cancer. 2010;127:461.CrossRef McCormack VA, Perry NM, Vinnicombe SJ, Dos Santos Silva I. Changes and tracking of mammographic density in relation to Pike's model of breast tissue aging: a UK longitudinal study. Int J Cancer. 2010;127:461.CrossRef
22.
go back to reference Harvey JA. Quantitative assessment of percent breast density: analog versus digital acquisition. Technol Cancer Res Treat. 2004;3:611–6.CrossRefPubMed Harvey JA. Quantitative assessment of percent breast density: analog versus digital acquisition. Technol Cancer Res Treat. 2004;3:611–6.CrossRefPubMed
23.
go back to reference Bosmans H, De HA, Lemmens K, Zanca F, Thierens H, Van OC, et al. Technical and clinical breast cancer screening performance indicators for computed radiography versus direct digital radiography. Eur Radiol. 2013;23:2891–8.CrossRefPubMed Bosmans H, De HA, Lemmens K, Zanca F, Thierens H, Van OC, et al. Technical and clinical breast cancer screening performance indicators for computed radiography versus direct digital radiography. Eur Radiol. 2013;23:2891–8.CrossRefPubMed
24.
go back to reference Chiarelli AM, Edwards SA, Prummel MV, Muradali D, Majpruz V, Done SJ, et al. Digital compared with screen-film mammography: performance measures in concurrent cohorts within an organized breast screening program. Radiology. 2013;268:684–93.CrossRefPubMed Chiarelli AM, Edwards SA, Prummel MV, Muradali D, Majpruz V, Done SJ, et al. Digital compared with screen-film mammography: performance measures in concurrent cohorts within an organized breast screening program. Radiology. 2013;268:684–93.CrossRefPubMed
25.
go back to reference Jefferys M, Harvey J, Highnam R. Comparing a new volumetric breast density method (Volpara™) to Cumulus. In: Martí J, Oliver A, Freixenet J, Martí R, editors. Digital Mammography: 10th International Workshop, IWDM 2010; Girona, Catalonia, Spain; June 16–18, 2010. Berlin: Springer; 2010. p. 408–13.CrossRef Jefferys M, Harvey J, Highnam R. Comparing a new volumetric breast density method (Volpara™) to Cumulus. In: Martí J, Oliver A, Freixenet J, Martí R, editors. Digital Mammography: 10th International Workshop, IWDM 2010; Girona, Catalonia, Spain; June 16–18, 2010. Berlin: Springer; 2010. p. 408–13.CrossRef
26.
go back to reference Busana MC, Eng A, Denholm R, Dowsett M, Vinnicombe S, Allen S, et al. Impact of type of full-field digital image on mammographic density assessment and breast cancer risk estimation: a case–control study. Breast Cancer Res. 2016;18:96.CrossRefPubMedPubMedCentral Busana MC, Eng A, Denholm R, Dowsett M, Vinnicombe S, Allen S, et al. Impact of type of full-field digital image on mammographic density assessment and breast cancer risk estimation: a case–control study. Breast Cancer Res. 2016;18:96.CrossRefPubMedPubMedCentral
27.
go back to reference Tyson AH, Mawdsley GE, Yaffe MJ. Measurement of compressed breast thickness by optical stereoscopic photogrammetry. Med Phys. 2009;36:569–76.CrossRefPubMed Tyson AH, Mawdsley GE, Yaffe MJ. Measurement of compressed breast thickness by optical stereoscopic photogrammetry. Med Phys. 2009;36:569–76.CrossRefPubMed
28.
go back to reference Damases CN, Brennan PC, McEntee MF. Mammographic density measurements are not affected by mammography system. J Med Imaging (Bellingham). 2015;2:015501.CrossRef Damases CN, Brennan PC, McEntee MF. Mammographic density measurements are not affected by mammography system. J Med Imaging (Bellingham). 2015;2:015501.CrossRef
Metadata
Title
Mammographic density assessed on paired raw and processed digital images and on paired screen-film and digital images across three mammography systems
Authors
Anya Burton
Graham Byrnes
Jennifer Stone
Rulla M. Tamimi
John Heine
Celine Vachon
Vahit Ozmen
Ana Pereira
Maria Luisa Garmendia
Christopher Scott
John H. Hipwell
Caroline Dickens
Joachim Schüz
Mustafa Erkin Aribal
Kimberly Bertrand
Ava Kwong
Graham G. Giles
John Hopper
Beatriz Pérez Gómez
Marina Pollán
Soo-Hwang Teo
Shivaani Mariapun
Nur Aishah Mohd Taib
Martín Lajous
Ruy Lopez-Riduara
Megan Rice
Isabelle Romieu
Anath Arzee Flugelman
Giske Ursin
Samera Qureshi
Huiyan Ma
Eunjung Lee
Reza Sirous
Mehri Sirous
Jong Won Lee
Jisun Kim
Dorria Salem
Rasha Kamal
Mikael Hartman
Hui Miao
Kee-Seng Chia
Chisato Nagata
Sudhir Vinayak
Rose Ndumia
Carla H. van Gils
Johanna O. P. Wanders
Beata Peplonska
Agnieszka Bukowska
Steve Allen
Sarah Vinnicombe
Sue Moss
Anna M. Chiarelli
Linda Linton
Gertraud Maskarinec
Martin J. Yaffe
Norman F. Boyd
Isabel dos-Santos-Silva
Valerie A. McCormack
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2016
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-016-0787-0

Other articles of this Issue 1/2016

Breast Cancer Research 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine