Skip to main content
Top
Published in: Breast Cancer Research 1/2016

Open Access 01-12-2016 | Research article

Pre-natal exposures and breast tissue composition: findings from a British pre-birth cohort of young women and a systematic review

Authors: Rachel Denholm, Bianca De Stavola, John H. Hipwell, Simon J. Doran, Marta C. Busana, Amanda Eng, Mona Jeffreys, Martin O. Leach, David Hawkes, Isabel dos Santos Silva

Published in: Breast Cancer Research | Issue 1/2016

Login to get access

Abstract

Background

Breast density, the amount of fibroglandular tissue in the adult breast for a women’s age and body mass index, is a strong biomarker of susceptibility to breast cancer, which may, like breast cancer risk itself, be influenced by events early in life. In the present study, we investigated the association between pre-natal exposures and breast tissue composition.

Methods

A sample of 500 young, nulliparous women (aged approximately 21 years) from a U.K. pre-birth cohort underwent a magnetic resonance imaging examination of their breasts to estimate percent water, a measure of the relative amount of fibroglandular tissue equivalent to mammographic percent density. Information on pre-natal exposures was collected throughout the mothers’ pregnancy and shortly after delivery. Regression models were used to investigate associations between percent water and pre-natal exposures. Mediation analysis, and a systematic review and meta-analysis of the published literature, were also conducted.

Results

Adjusted percent water in young women was positively associated with maternal height (p for linear trend [p t] = 0.005), maternal mammographic density in middle age (p t = 0.018) and the participant’s birth size (p t < 0.001 for birthweight). A 1-SD increment in weight (473 g), length (2.3 cm), head circumference (1.2 cm) and Ponderal Index (4.1 g/cm3) at birth were associated with 3 % (95 % CI 2–5 %), 2 % (95 % CI 0–3 %), 3 % (95 % CI 1–4 %) and 1 % (95 % CI 0–3 %), respectively, increases in mean adjusted percent water. The effect of maternal height on the participants’ percent water was partly mediated through birth size, but there was little evidence that the effect of birthweight was primarily mediated via adult body size. The meta-analysis supported the study findings, with breast density being positively associated with birth size.

Conclusions

These findings provide strong evidence of pre-natal influences on breast tissue composition. The positive association between birth size and relative amount of fibroglandular tissue indicates that breast density and breast cancer risk may share a common pre-natal origin.
Appendix
Available only for authorised users
Literature
1.
go back to reference dos Santos Silva I, De Stavola B, McCormack V, Collaborative Group on Pre-Natal Risk Factors and Subsequent Risk of Breast Cancer. Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. PLoS Med. 2008;5(9):e193.CrossRefPubMedCentral dos Santos Silva I, De Stavola B, McCormack V, Collaborative Group on Pre-Natal Risk Factors and Subsequent Risk of Breast Cancer. Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. PLoS Med. 2008;5(9):e193.CrossRefPubMedCentral
2.
go back to reference Michels KB, Xue F. Role of birthweight in the etiology of breast cancer. Int J Cancer. 2006;119(9):2007–25.CrossRefPubMed Michels KB, Xue F. Role of birthweight in the etiology of breast cancer. Int J Cancer. 2006;119(9):2007–25.CrossRefPubMed
3.
go back to reference Savarese TM, Low HP, Baik I, Strohsnitter WC, Hsieh CC. Normal breast stem cells, malignant breast stem cells, and the perinatal origin of breast cancer. Stem Cell Rev. 2006;2(2):103–10.CrossRefPubMed Savarese TM, Low HP, Baik I, Strohsnitter WC, Hsieh CC. Normal breast stem cells, malignant breast stem cells, and the perinatal origin of breast cancer. Stem Cell Rev. 2006;2(2):103–10.CrossRefPubMed
4.
go back to reference McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1159–69.CrossRefPubMed McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1159–69.CrossRefPubMed
5.
go back to reference McCormack VA, Perry NM, Vinnicombe SJ, dos Santos Silva I. Changes and tracking of mammographic density in relation to Pike’s model of breast tissue aging: a UK longitudinal study. Int J Cancer. 2010;127(2):452–61.PubMed McCormack VA, Perry NM, Vinnicombe SJ, dos Santos Silva I. Changes and tracking of mammographic density in relation to Pike’s model of breast tissue aging: a UK longitudinal study. Int J Cancer. 2010;127(2):452–61.PubMed
6.
go back to reference Yaffe MJ, Mainprize JG. Risk of radiation-induced breast cancer from mammographic screening. Radiology. 2011;258(1):98–105.CrossRefPubMed Yaffe MJ, Mainprize JG. Risk of radiation-induced breast cancer from mammographic screening. Radiology. 2011;258(1):98–105.CrossRefPubMed
7.
go back to reference Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the ‘children of the 90s’—the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2013;42(1):111–27.CrossRefPubMed Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the ‘children of the 90s’—the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2013;42(1):111–27.CrossRefPubMed
8.
go back to reference Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110.CrossRefPubMed Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110.CrossRefPubMed
10.
go back to reference Khazen M, Warren RM, Boggis CR, Bryant EC, Reed S, Warsi I, et al. A pilot study of compositional analysis of the breast and estimation of breast mammographic density using three-dimensional T1-weighted magnetic resonance imaging. Cancer Epidemiol Biomarkers Prev. 2008;17(9):2268–74.CrossRefPubMedPubMedCentral Khazen M, Warren RM, Boggis CR, Bryant EC, Reed S, Warsi I, et al. A pilot study of compositional analysis of the breast and estimation of breast mammographic density using three-dimensional T1-weighted magnetic resonance imaging. Cancer Epidemiol Biomarkers Prev. 2008;17(9):2268–74.CrossRefPubMedPubMedCentral
11.
go back to reference Thompson DJ, Leach MO, Kwan-Lim G, Gayther SA, Ramus SJ, Warsi I, et al. Assessing the usefulness of a novel MRI-based breast density estimation algorithm in a cohort of women at high genetic risk of breast cancer: the UK MARIBS study. Breast Cancer Res. 2009;11(6):R80.CrossRefPubMedPubMedCentral Thompson DJ, Leach MO, Kwan-Lim G, Gayther SA, Ramus SJ, Warsi I, et al. Assessing the usefulness of a novel MRI-based breast density estimation algorithm in a cohort of women at high genetic risk of breast cancer: the UK MARIBS study. Breast Cancer Res. 2009;11(6):R80.CrossRefPubMedPubMedCentral
12.
go back to reference Boyd N, Martin L, Chavez S, Gunasekara A, Salleh A, Melnichouk O, et al. Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study. Lancet Oncol. 2009;10(6):569–80.CrossRefPubMed Boyd N, Martin L, Chavez S, Gunasekara A, Salleh A, Melnichouk O, et al. Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study. Lancet Oncol. 2009;10(6):569–80.CrossRefPubMed
13.
go back to reference Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, et al. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst. 1995;87(9):670–5.CrossRefPubMed Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, et al. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst. 1995;87(9):670–5.CrossRefPubMed
14.
go back to reference Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ. The quantitative analysis of mammographic densities. Phys Med Biol. 1994;39(10):1629–38.CrossRefPubMed Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ. The quantitative analysis of mammographic densities. Phys Med Biol. 1994;39(10):1629–38.CrossRefPubMed
15.
go back to reference Vachon CM, Fowler EE, Tiffenberg G, Scott CG, Pankratz VS, Sellers TA, et al. Comparison of percent density from raw and processed full-field digital mammography data. Breast Cancer Res. 2013;15(1):R1.CrossRefPubMedPubMedCentral Vachon CM, Fowler EE, Tiffenberg G, Scott CG, Pankratz VS, Sellers TA, et al. Comparison of percent density from raw and processed full-field digital mammography data. Breast Cancer Res. 2013;15(1):R1.CrossRefPubMedPubMedCentral
16.
go back to reference MacKinnon DP. Introduction to statistical mediation analysis. New York: Taylor & Francis; 2008. MacKinnon DP. Introduction to statistical mediation analysis. New York: Taylor & Francis; 2008.
17.
go back to reference Efron B, Tibshirani RT. An introduction to the bootstrap (Monographs on Statistics and Applied Probability 57). London: Chapman & Hall/CRC; 1993.CrossRef Efron B, Tibshirani RT. An introduction to the bootstrap (Monographs on Statistics and Applied Probability 57). London: Chapman & Hall/CRC; 1993.CrossRef
18.
go back to reference Little RJA, Rubin DB. Statistical analysis with missing data. New York: John Wiley & Sons; 1987. Little RJA, Rubin DB. Statistical analysis with missing data. New York: John Wiley & Sons; 1987.
20.
go back to reference Lope V, Pérez-Gómez B, Moreno MP, Vidal C, Salas-Trejo D, Ascunce N, et al. Childhood factors associated with mammographic density in adult women. Breast Cancer Res Treat. 2011;130(3):965–74.CrossRefPubMed Lope V, Pérez-Gómez B, Moreno MP, Vidal C, Salas-Trejo D, Ascunce N, et al. Childhood factors associated with mammographic density in adult women. Breast Cancer Res Treat. 2011;130(3):965–74.CrossRefPubMed
21.
go back to reference Jeffreys M, Warren R, Highnam R, Davey Smith G. Breast cancer risk factors and a novel measure of volumetric breast density: cross-sectional study. Br J Cancer. 2008;98(1):210–6.CrossRefPubMed Jeffreys M, Warren R, Highnam R, Davey Smith G. Breast cancer risk factors and a novel measure of volumetric breast density: cross-sectional study. Br J Cancer. 2008;98(1):210–6.CrossRefPubMed
22.
go back to reference Cerhan JR, Sellers TA, Janney CA, Pankratz VS, Brandt KR, Vachon CM. Prenatal and perinatal correlates of adult mammographic breast density. Cancer Epidemiol Biomarkers Prev. 2005;14(6):1502–8.CrossRefPubMed Cerhan JR, Sellers TA, Janney CA, Pankratz VS, Brandt KR, Vachon CM. Prenatal and perinatal correlates of adult mammographic breast density. Cancer Epidemiol Biomarkers Prev. 2005;14(6):1502–8.CrossRefPubMed
23.
go back to reference Terry MB, Schaefer CA, Flom JD, Wei Y, Tehranifar P, Liao Y, et al. Prenatal smoke exposure and mammographic density in mid-life. J Dev Orig Health Dis. 2011;2(6):340–52.CrossRefPubMedPubMedCentral Terry MB, Schaefer CA, Flom JD, Wei Y, Tehranifar P, Liao Y, et al. Prenatal smoke exposure and mammographic density in mid-life. J Dev Orig Health Dis. 2011;2(6):340–52.CrossRefPubMedPubMedCentral
24.
go back to reference Maskarinec G, Morimoto Y, Daida Y, Shepherd J, Novotny R. A comparison of breast density measures between mothers and adolescent daughters. BMC Cancer. 2011;11:330.CrossRefPubMedPubMedCentral Maskarinec G, Morimoto Y, Daida Y, Shepherd J, Novotny R. A comparison of breast density measures between mothers and adolescent daughters. BMC Cancer. 2011;11:330.CrossRefPubMedPubMedCentral
25.
go back to reference Ekbom A, Thurfjell E, Hsieh CC, Trichopoulos D, Adami HO. Perinatal characteristics and adult mammographic patterns. Int J Cancer. 1995;61(2):177–80.CrossRefPubMed Ekbom A, Thurfjell E, Hsieh CC, Trichopoulos D, Adami HO. Perinatal characteristics and adult mammographic patterns. Int J Cancer. 1995;61(2):177–80.CrossRefPubMed
26.
go back to reference Tamimi RM, Eriksson L, Lagiou P, Czene K, Ekbom A, Hsieh CC, et al. Birth weight and mammographic density among postmenopausal women in Sweden. Int J Cancer. 2010;126(4):985–91.PubMed Tamimi RM, Eriksson L, Lagiou P, Czene K, Ekbom A, Hsieh CC, et al. Birth weight and mammographic density among postmenopausal women in Sweden. Int J Cancer. 2010;126(4):985–91.PubMed
27.
go back to reference Yang TO, Reeves GK, Green J, Beral V, Cairns BJ, Million Women Study Collaborators. Birth weight and adult cancer incidence: large prospective study and meta-analysis. Ann Oncol. 2014;25(9):1836–43.CrossRefPubMedPubMedCentral Yang TO, Reeves GK, Green J, Beral V, Cairns BJ, Million Women Study Collaborators. Birth weight and adult cancer incidence: large prospective study and meta-analysis. Ann Oncol. 2014;25(9):1836–43.CrossRefPubMedPubMedCentral
28.
go back to reference Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ. Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1998;7(12):1133–44.PubMed Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ. Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1998;7(12):1133–44.PubMed
29.
go back to reference dos Santos Silva I, De Stavola B, McCormack V. Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. PLoS Med. 2008;5(9), e193.CrossRefPubMedCentral dos Santos Silva I, De Stavola B, McCormack V. Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. PLoS Med. 2008;5(9), e193.CrossRefPubMedCentral
31.
go back to reference Norat T, Chan D, Lau R, Vieira R. WCRF/AICR systematic literature review continuous update report: the associations between food, nutrition and physical activity and the risk of breast cancer. London: Imperial College London; 2012. Norat T, Chan D, Lau R, Vieira R. WCRF/AICR systematic literature review continuous update report: the associations between food, nutrition and physical activity and the risk of breast cancer. London: Imperial College London; 2012.
32.
go back to reference Denholm R, Hipwell HJ, Doran JS, Busana MC, Schmidt MA, Jeffreys M, et al. Comparison of breast density measures using manual and automated segmentation of three-dimensional Magnetic Resonance images. 2016. Denholm R, Hipwell HJ, Doran JS, Busana MC, Schmidt MA, Jeffreys M, et al. Comparison of breast density measures using manual and automated segmentation of three-dimensional Magnetic Resonance images. 2016.
33.
go back to reference McCormack VA, dos Santos Silva I, De Stavola BL, Perry N, Vinnicombe S, Swerdlow AJ, et al. Life-course body size and perimenopausal mammographic parenchymal patterns in the MRC 1946 British birth cohort. Br J Cancer. 2003;89(5):852–9.CrossRefPubMedPubMedCentral McCormack VA, dos Santos Silva I, De Stavola BL, Perry N, Vinnicombe S, Swerdlow AJ, et al. Life-course body size and perimenopausal mammographic parenchymal patterns in the MRC 1946 British birth cohort. Br J Cancer. 2003;89(5):852–9.CrossRefPubMedPubMedCentral
34.
go back to reference Jeffreys M, Warren R, Gunnell D, McCarron P, Smith GD. Life course breast cancer risk factors and adult breast density (United Kingdom). Cancer Causes Control. 2004;15(9):947–55.CrossRefPubMed Jeffreys M, Warren R, Gunnell D, McCarron P, Smith GD. Life course breast cancer risk factors and adult breast density (United Kingdom). Cancer Causes Control. 2004;15(9):947–55.CrossRefPubMed
35.
go back to reference Andersen ZJ, Baker JL, Bihrmann K, Vejborg I, Sorensen TI, Lynge E. Birth weight, childhood body mass index, and height in relation to mammographic density and breast cancer: a register-based cohort study. Breast Cancer Res. 2014;16(1):R4.CrossRefPubMedPubMedCentral Andersen ZJ, Baker JL, Bihrmann K, Vejborg I, Sorensen TI, Lynge E. Birth weight, childhood body mass index, and height in relation to mammographic density and breast cancer: a register-based cohort study. Breast Cancer Res. 2014;16(1):R4.CrossRefPubMedPubMedCentral
36.
go back to reference dos Santos Silva I, De Stavola BL, Mann V, Kuh D, Hardy R, Wadsworth ME. Prenatal factors, childhood growth trajectories and age at menarche. Int J Epidemiol. 2002;31(2):405–12.CrossRefPubMed dos Santos Silva I, De Stavola BL, Mann V, Kuh D, Hardy R, Wadsworth ME. Prenatal factors, childhood growth trajectories and age at menarche. Int J Epidemiol. 2002;31(2):405–12.CrossRefPubMed
37.
go back to reference Sorensen HT, Sabroe S, Rothman KJ, Gillman M, Steffensen FH, Fischer P, et al. Birth weight and length as predictors for adult height. Am J Epidemiol. 1999;149(8):726–9.CrossRefPubMed Sorensen HT, Sabroe S, Rothman KJ, Gillman M, Steffensen FH, Fischer P, et al. Birth weight and length as predictors for adult height. Am J Epidemiol. 1999;149(8):726–9.CrossRefPubMed
38.
go back to reference Trichopoulos D. Hypothesis: does breast cancer originate in utero? Lancet. 1990;335(8695):939–40.CrossRefPubMed Trichopoulos D. Hypothesis: does breast cancer originate in utero? Lancet. 1990;335(8695):939–40.CrossRefPubMed
39.
go back to reference Trichopoulos D, Adami HO, Ekbom A, Hsieh CC, Lagiou P. Early life events and conditions and breast cancer risk: from epidemiology to etiology. Int J Cancer. 2008;122(3):481–5.CrossRefPubMed Trichopoulos D, Adami HO, Ekbom A, Hsieh CC, Lagiou P. Early life events and conditions and breast cancer risk: from epidemiology to etiology. Int J Cancer. 2008;122(3):481–5.CrossRefPubMed
40.
go back to reference Savarese TM, Strohsnitter WC, Low HP, Liu Q, Baik I, Okulicz W, et al. Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Res. 2007;9(3):R29.CrossRefPubMedPubMedCentral Savarese TM, Strohsnitter WC, Low HP, Liu Q, Baik I, Okulicz W, et al. Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Res. 2007;9(3):R29.CrossRefPubMedPubMedCentral
41.
go back to reference Baik I, DeVito WJ, Ballen K, Becker PS, Okulicz W, Liu Q, et al. Association of fetal hormone levels with stem cell potential: evidence for early life roots of human cancer. Cancer Res. 2005;65(1):358–63.PubMed Baik I, DeVito WJ, Ballen K, Becker PS, Okulicz W, Liu Q, et al. Association of fetal hormone levels with stem cell potential: evidence for early life roots of human cancer. Cancer Res. 2005;65(1):358–63.PubMed
42.
go back to reference Trichopoulos D, Lagiou P, Adami HO. Towards an integrated model for breast cancer etiology: the crucial role of the number of mammary tissue-specific stem cells. Breast Cancer Res. 2005;7(1):13–7.CrossRefPubMed Trichopoulos D, Lagiou P, Adami HO. Towards an integrated model for breast cancer etiology: the crucial role of the number of mammary tissue-specific stem cells. Breast Cancer Res. 2005;7(1):13–7.CrossRefPubMed
43.
go back to reference Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MR, et al. Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002;347(12):886–94.CrossRefPubMed Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MR, et al. Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002;347(12):886–94.CrossRefPubMed
44.
go back to reference Ursin G, Lillie EO, Lee E, Cockburn M, Schork NJ, Cozen W, et al. The relative importance of genetics and environment on mammographic density. Cancer Epidemiol Biomarkers Prev. 2009;18(1):102–12.CrossRefPubMed Ursin G, Lillie EO, Lee E, Cockburn M, Schork NJ, Cozen W, et al. The relative importance of genetics and environment on mammographic density. Cancer Epidemiol Biomarkers Prev. 2009;18(1):102–12.CrossRefPubMed
45.
go back to reference Stone J, Dite GS, Gunasekara A, English DR, McCredie MR, Giles GG, et al. The heritability of mammographically dense and nondense breast tissue. Cancer Epidemiol Biomarkers Prev. 2006;15(4):612–7.CrossRefPubMed Stone J, Dite GS, Gunasekara A, English DR, McCredie MR, Giles GG, et al. The heritability of mammographically dense and nondense breast tissue. Cancer Epidemiol Biomarkers Prev. 2006;15(4):612–7.CrossRefPubMed
46.
go back to reference Sellers TA, Vachon CM, Pankratz VS, Janney CA, Fredericksen Z, Brandt KR, et al. Association of childhood and adolescent anthropometric factors, physical activity, and diet with adult mammographic breast density. Am J Epidemiol. 2007;166(4):456–64.CrossRefPubMed Sellers TA, Vachon CM, Pankratz VS, Janney CA, Fredericksen Z, Brandt KR, et al. Association of childhood and adolescent anthropometric factors, physical activity, and diet with adult mammographic breast density. Am J Epidemiol. 2007;166(4):456–64.CrossRefPubMed
47.
go back to reference Dorgan JF, Klifa C, Shepherd JA, Egleston BL, Kwiterovich PO, Himes JH, et al. Height, adiposity and body fat distribution and breast density in young women. Breast Cancer Res. 2012;14(4):R107.CrossRefPubMedPubMedCentral Dorgan JF, Klifa C, Shepherd JA, Egleston BL, Kwiterovich PO, Himes JH, et al. Height, adiposity and body fat distribution and breast density in young women. Breast Cancer Res. 2012;14(4):R107.CrossRefPubMedPubMedCentral
48.
go back to reference Lagiou P, Trichopoulos D, Hsieh CC. Is maternal height a risk factor for breast cancer? Eur J Cancer Prev. 2013;22:389–90.CrossRefPubMed Lagiou P, Trichopoulos D, Hsieh CC. Is maternal height a risk factor for breast cancer? Eur J Cancer Prev. 2013;22:389–90.CrossRefPubMed
49.
go back to reference Pearce MS, Tennant PW, Mann KD, Pollard TM, McLean L, Kaye B, et al. Lifecourse predictors of mammographic density: the Newcastle Thousand Families cohort Study. Breast Cancer Res Treat. 2012;131(1):187–95.CrossRefPubMed Pearce MS, Tennant PW, Mann KD, Pollard TM, McLean L, Kaye B, et al. Lifecourse predictors of mammographic density: the Newcastle Thousand Families cohort Study. Breast Cancer Res Treat. 2012;131(1):187–95.CrossRefPubMed
50.
go back to reference Lokate M, van Duijnhoven FJ, van den Berg SW, Peeters PH, van Gils CH. Early life factors and adult mammographic density. Cancer Causes Control. 2013;24(10):1771–8.CrossRefPubMed Lokate M, van Duijnhoven FJ, van den Berg SW, Peeters PH, van Gils CH. Early life factors and adult mammographic density. Cancer Causes Control. 2013;24(10):1771–8.CrossRefPubMed
Metadata
Title
Pre-natal exposures and breast tissue composition: findings from a British pre-birth cohort of young women and a systematic review
Authors
Rachel Denholm
Bianca De Stavola
John H. Hipwell
Simon J. Doran
Marta C. Busana
Amanda Eng
Mona Jeffreys
Martin O. Leach
David Hawkes
Isabel dos Santos Silva
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2016
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-016-0751-z

Other articles of this Issue 1/2016

Breast Cancer Research 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine