Skip to main content
Top
Published in: Critical Care 1/2021

Open Access 01-12-2021 | Research

Diaphragm echodensity in mechanically ventilated patients: a description of technique and outcomes

Authors: Benjamin Coiffard, Stephen Riegler, Michael C. Sklar, Martin Dres, Stefannie Vorona, W. Darlene Reid, Laurent J. Brochard, Niall D. Ferguson, Ewan C. Goligher

Published in: Critical Care | Issue 1/2021

Login to get access

Abstract

Background

Acute increases in muscle sonographic echodensity reflect muscle injury. Diaphragm echodensity has not been measured in mechanically ventilated patients. We undertook to develop a technique to characterize changes in diaphragm echodensity during mechanical ventilation and to assess whether these changes are correlated with prolonged mechanical ventilation.

Methods

Diaphragm ultrasound images were prospectively collected in mechanically ventilated patients and in 10 young healthy subjects. Echodensity was quantified based on the right-skewed distribution of grayscale values (50th percentile, ED50; 85th percentile, ED85). Intra- and inter-analyzer measurement reproducibility was determined. Outcomes recorded included duration of ventilation and ICU complications (including reintubation, tracheostomy, prolonged ventilation, or death).

Results

Echodensity measurements were obtained serially in 34 patients comprising a total of 104 images. Baseline (admission) diaphragm ED85 was increased in mechanically ventilated patients compared to younger healthy subjects (median 56, interquartile range (IQR) 42–84, vs. 39, IQR 36–52, p = 0.04). Patients with an initial increase in median echodensity over time (≥ + 10 in ED50 from baseline) had fewer ventilator-free days to day 60 (n = 13, median 46, IQR 0–52) compared to patients without this increase (n = 21, median 53 days, IQR 49–56, unadjusted p = 0.03). Both decreases and increases in diaphragm thickness during mechanical ventilation were associated with increases in ED50 over time (adjusted p = 0.03, conditional R2 = 0.80) and the association between increase in ED50 and outcomes persisted after adjusting for changes in diaphragm thickness.

Conclusions

Many patients exhibit increased diaphragm echodensity at the outset of mechanical ventilation. Increases in diaphragm echodensity during the early course of mechanical ventilation are associated with prolonged mechanical ventilation. Both decreases and increases in diaphragm thickness during mechanical ventilation are associated with increased echodensity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Connolly B, MacBean V, Crowley C. Ultrasound for the assessment of peripheral skeletal muscle architecture in critical illness: a systematic review. Crit Care Med. 2015;43:897–905.CrossRef Connolly B, MacBean V, Crowley C. Ultrasound for the assessment of peripheral skeletal muscle architecture in critical illness: a systematic review. Crit Care Med. 2015;43:897–905.CrossRef
2.
go back to reference Tuinman PR, Jonkman AH, Dres M, Shi ZH, Goligher EC, Goffi A, et al. Respiratory muscle ultrasonography: methodology, basic and advanced principles and clinical applications in ICU and ED patients-a narrative review. Intensive Care Med. 2020;46:594–605.CrossRef Tuinman PR, Jonkman AH, Dres M, Shi ZH, Goligher EC, Goffi A, et al. Respiratory muscle ultrasonography: methodology, basic and advanced principles and clinical applications in ICU and ED patients-a narrative review. Intensive Care Med. 2020;46:594–605.CrossRef
3.
go back to reference Strasser EM, Draskovits T, Praschak M, Quittan M, Graf A. Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. Age (Dordr). 2013;35:2377–88.CrossRef Strasser EM, Draskovits T, Praschak M, Quittan M, Graf A. Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. Age (Dordr). 2013;35:2377–88.CrossRef
4.
go back to reference Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve. 2008;37:679–93.CrossRef Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve. 2008;37:679–93.CrossRef
5.
go back to reference Heckmatt JZ, Dubowitz V, Leeman S. Detection of pathological change in dystrophic muscle with B-scan ultrasound imaging. Lancet. 1980;1:1389–90.CrossRef Heckmatt JZ, Dubowitz V, Leeman S. Detection of pathological change in dystrophic muscle with B-scan ultrasound imaging. Lancet. 1980;1:1389–90.CrossRef
6.
go back to reference Reimers CD, Schlotter B, Eicke BM, Witt TN. Calf enlargement in neuromuscular diseases: a quantitative ultrasound study in 350 patients and review of the literature. J Neurol Sci. 1996;143:46–56.CrossRef Reimers CD, Schlotter B, Eicke BM, Witt TN. Calf enlargement in neuromuscular diseases: a quantitative ultrasound study in 350 patients and review of the literature. J Neurol Sci. 1996;143:46–56.CrossRef
7.
go back to reference Heckmatt JZ, Pier N, Dubowitz V. Real-time ultrasound imaging of muscles. Muscle Nerve. 1988;11:56–65.CrossRef Heckmatt JZ, Pier N, Dubowitz V. Real-time ultrasound imaging of muscles. Muscle Nerve. 1988;11:56–65.CrossRef
8.
go back to reference Puthucheary ZA, Phadke R, Rawal J, McPhail MJ, Sidhu PS, Rowlerson A, et al. Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med. 2015;43:1603–11.CrossRef Puthucheary ZA, Phadke R, Rawal J, McPhail MJ, Sidhu PS, Rowlerson A, et al. Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med. 2015;43:1603–11.CrossRef
9.
go back to reference Jiménez-Díaz F, Jimena I, Luque E, Mendizábal S, Bouffard A, Jiménez-Reina L, et al. Experimental muscle injury: correlation between ultrasound and histological findings. Muscle Nerve. 2012;45:705–12.CrossRef Jiménez-Díaz F, Jimena I, Luque E, Mendizábal S, Bouffard A, Jiménez-Reina L, et al. Experimental muscle injury: correlation between ultrasound and histological findings. Muscle Nerve. 2012;45:705–12.CrossRef
10.
go back to reference Koppaka S, Shklyar I, Rutkove SB, Darras BT, Anthony BW, Zaidman CM, et al. Quantitative ultrasound assessment of duchenne muscular dystrophy using edge detection analysis. J Ultrasound Med. 2016;35:1889–97.CrossRef Koppaka S, Shklyar I, Rutkove SB, Darras BT, Anthony BW, Zaidman CM, et al. Quantitative ultrasound assessment of duchenne muscular dystrophy using edge detection analysis. J Ultrasound Med. 2016;35:1889–97.CrossRef
11.
go back to reference Lee JC, Mitchell AWM, Healy JC. Imaging of muscle injury in the elite athlete. Br J Radiol. 2012;85:1173–85.CrossRef Lee JC, Mitchell AWM, Healy JC. Imaging of muscle injury in the elite athlete. Br J Radiol. 2012;85:1173–85.CrossRef
12.
go back to reference Berry MJ, Files DC, Campos CL, Bakhru RN, Skaggs BM, Morris PE. Echogenicity is related to skeletal muscle strength in patients with acute respiratory failure. J Cardiopulm Rehabil Prev. 2019;39:E17–20.CrossRef Berry MJ, Files DC, Campos CL, Bakhru RN, Skaggs BM, Morris PE. Echogenicity is related to skeletal muscle strength in patients with acute respiratory failure. J Cardiopulm Rehabil Prev. 2019;39:E17–20.CrossRef
13.
go back to reference Grosu HB, Lee YI, Lee J, Eden E, Eikermann M, Rose KM. Diaphragm muscle thinning in patients who are mechanically ventilated. Chest. 2012;142:1455–60.CrossRef Grosu HB, Lee YI, Lee J, Eden E, Eikermann M, Rose KM. Diaphragm muscle thinning in patients who are mechanically ventilated. Chest. 2012;142:1455–60.CrossRef
14.
go back to reference Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192:1080–8.CrossRef Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192:1080–8.CrossRef
15.
go back to reference Sklar MC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, et al. Association of low baseline diaphragm muscle mass with prolonged mechanical ventilation and mortality among critically Ill adults. JAMA Netw Open. 2020;3:e1921520.CrossRef Sklar MC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, et al. Association of low baseline diaphragm muscle mass with prolonged mechanical ventilation and mortality among critically Ill adults. JAMA Netw Open. 2020;3:e1921520.CrossRef
16.
go back to reference Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–13.CrossRef Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–13.CrossRef
17.
go back to reference Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41:642–9.CrossRef Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41:642–9.CrossRef
18.
go back to reference Harris-Love MO, Seamon BA, Teixeira C, Ismail C. Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity. PeerJ. 2016;4:e1721.CrossRef Harris-Love MO, Seamon BA, Teixeira C, Ismail C. Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity. PeerJ. 2016;4:e1721.CrossRef
19.
go back to reference Parry SM, El-Ansary D, Cartwright MS, Sarwal A, Berney S, Koopman R, et al. Ultrasonography in the intensive care unit setting can be used to detect changes in the quality of muscle and is related to muscle strength and function. J Crit Care. 2015;30(1151):e9-14. Parry SM, El-Ansary D, Cartwright MS, Sarwal A, Berney S, Koopman R, et al. Ultrasonography in the intensive care unit setting can be used to detect changes in the quality of muscle and is related to muscle strength and function. J Crit Care. 2015;30(1151):e9-14.
20.
go back to reference Sarwal A, Parry SM, Berry MJ, Hsu FC, Lewis MT, Justus NW, et al. Interobserver reliability of quantitative muscle sonographic analysis in the critically Ill population. J Ultrasound Med. 2015;34:1191–200.CrossRef Sarwal A, Parry SM, Berry MJ, Hsu FC, Lewis MT, Justus NW, et al. Interobserver reliability of quantitative muscle sonographic analysis in the critically Ill population. J Ultrasound Med. 2015;34:1191–200.CrossRef
21.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–10.CrossRef Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–10.CrossRef
22.
go back to reference Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/ North American multicenter study. JAMA. 1993;270:2957–63.CrossRef Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/ North American multicenter study. JAMA. 1993;270:2957–63.CrossRef
23.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRef Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRef
24.
go back to reference Riker RR, Picard JT, Fraser GL. Prospective evaluation of the Sedation-Agitation Scale for adult critically ill patients. Crit Care Med. 1999;27:1325–9.CrossRef Riker RR, Picard JT, Fraser GL. Prospective evaluation of the Sedation-Agitation Scale for adult critically ill patients. Crit Care Med. 1999;27:1325–9.CrossRef
25.
go back to reference Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–710. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–710.
26.
go back to reference Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE. Skeletal muscle sonography: a correlative study of echogenicity and morphology. J Ultrasound Med. 1993;12:73–7.CrossRef Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE. Skeletal muscle sonography: a correlative study of echogenicity and morphology. J Ultrasound Med. 1993;12:73–7.CrossRef
27.
go back to reference Zaidman CM, Holland MR, Anderson CC, Pestronk A. Calibrated quantitative ultrasound imaging of skeletal muscle using backscatter analysis. Muscle Nerve. 2008;38:893–8.CrossRef Zaidman CM, Holland MR, Anderson CC, Pestronk A. Calibrated quantitative ultrasound imaging of skeletal muscle using backscatter analysis. Muscle Nerve. 2008;38:893–8.CrossRef
28.
go back to reference Maurits NM, Bollen AE, Windhausen A, De Jager AE, Van Der Hoeven JH. Muscle ultrasound analysis: normal values and differentiation between myopathies and neuropathies. Ultrasound Med Biol. 2003;29:215–25.CrossRef Maurits NM, Bollen AE, Windhausen A, De Jager AE, Van Der Hoeven JH. Muscle ultrasound analysis: normal values and differentiation between myopathies and neuropathies. Ultrasound Med Biol. 2003;29:215–25.CrossRef
29.
go back to reference Mascalchi M, Camiciottoli G, Diciotti S. Lung densitometry: why, how and when. J Thorac Dis. 2017;9:3319–45.CrossRef Mascalchi M, Camiciottoli G, Diciotti S. Lung densitometry: why, how and when. J Thorac Dis. 2017;9:3319–45.CrossRef
30.
go back to reference Goligher EC, Brochard LJ, Reid DW, Fan E, Saarela O, Slutsky AS, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med. 2019;7:90–8.CrossRef Goligher EC, Brochard LJ, Reid DW, Fan E, Saarela O, Slutsky AS, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med. 2019;7:90–8.CrossRef
31.
go back to reference Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438–42.CrossRef Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438–42.CrossRef
32.
go back to reference Jiang TX, Reid WD, Road JD. Delayed diaphragm injury and diaphragm force production. Am J Respir Crit Care Med. 1998;157:736–42.CrossRef Jiang TX, Reid WD, Road JD. Delayed diaphragm injury and diaphragm force production. Am J Respir Crit Care Med. 1998;157:736–42.CrossRef
33.
go back to reference Orozco-Levi M, Lloreta J, Minguella J, Serrano S, Broquetas JM, Gea J. Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1734–9.CrossRef Orozco-Levi M, Lloreta J, Minguella J, Serrano S, Broquetas JM, Gea J. Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1734–9.CrossRef
34.
go back to reference Vassilakopoulos T, Hussain SN. Ventilatory muscle activation and inflammation: cytokines, reactive oxygen species, and nitric oxide. J Appl Physiol. 1985;2007(102):1687–95. Vassilakopoulos T, Hussain SN. Ventilatory muscle activation and inflammation: cytokines, reactive oxygen species, and nitric oxide. J Appl Physiol. 1985;2007(102):1687–95.
35.
go back to reference Hillas G, Perlikos F, Toumpanakis D, Litsiou E, Nikolakopoulou S, Sagris K, et al. Controlled mechanical ventilation attenuates the systemic inflammation of severe chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med. 2016;193:696–8.CrossRef Hillas G, Perlikos F, Toumpanakis D, Litsiou E, Nikolakopoulou S, Sagris K, et al. Controlled mechanical ventilation attenuates the systemic inflammation of severe chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med. 2016;193:696–8.CrossRef
37.
go back to reference Mourtzakis M, Parry S, Connolly B, Puthucheary Z. Skeletal muscle ultrasound in critical care: a tool in need of translation. Ann Am Thorac Soc. 2017;14:1495–503.CrossRef Mourtzakis M, Parry S, Connolly B, Puthucheary Z. Skeletal muscle ultrasound in critical care: a tool in need of translation. Ann Am Thorac Soc. 2017;14:1495–503.CrossRef
38.
go back to reference Ihnatsenka B, Boezaart AP. Ultrasound: Basic understanding and learning the language. Int J Shoulder Surg. 2010;4:55–62.CrossRef Ihnatsenka B, Boezaart AP. Ultrasound: Basic understanding and learning the language. Int J Shoulder Surg. 2010;4:55–62.CrossRef
39.
go back to reference Young HJ, Jenkins NT, Zhao Q, Mccully KK. Measurement of intramuscular fat by muscle echo intensity. Muscle Nerve. 2015;52:963–71.CrossRef Young HJ, Jenkins NT, Zhao Q, Mccully KK. Measurement of intramuscular fat by muscle echo intensity. Muscle Nerve. 2015;52:963–71.CrossRef
40.
go back to reference Lori S, Lolli F, Molesti E, Bastianelli M, Gabbanini S, Saia V, et al. Muscle-ultrasound evaluation in healthy pediatric subjects: Age-related normative data. Muscle Nerve. 2018;58:245–50.CrossRef Lori S, Lolli F, Molesti E, Bastianelli M, Gabbanini S, Saia V, et al. Muscle-ultrasound evaluation in healthy pediatric subjects: Age-related normative data. Muscle Nerve. 2018;58:245–50.CrossRef
Metadata
Title
Diaphragm echodensity in mechanically ventilated patients: a description of technique and outcomes
Authors
Benjamin Coiffard
Stephen Riegler
Michael C. Sklar
Martin Dres
Stefannie Vorona
W. Darlene Reid
Laurent J. Brochard
Niall D. Ferguson
Ewan C. Goligher
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2021
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-021-03494-9

Other articles of this Issue 1/2021

Critical Care 1/2021 Go to the issue