Skip to main content
Top
Published in: Critical Care 1/2021

Open Access 01-12-2021 | Research

Automated detection and quantification of reverse triggering effort under mechanical ventilation

Authors: Tài Pham, Jaume Montanya, Irene Telias, Thomas Piraino, Rudys Magrans, Rémi Coudroy, L. Felipe Damiani, Ricard Mellado Artigas, Matías Madorno, Lluis Blanch, Laurent Brochard, the BEARDS study investigators

Published in: Critical Care | Issue 1/2021

Login to get access

Abstract

Background

Reverse triggering (RT) is a dyssynchrony defined by a respiratory muscle contraction following a passive mechanical insufflation. It is potentially harmful for the lung and the diaphragm, but its detection is challenging. Magnitude of effort generated by RT is currently unknown. Our objective was to validate supervised methods for automatic detection of RT using only airway pressure (Paw) and flow. A secondary objective was to describe the magnitude of the efforts generated during RT.

Methods

We developed algorithms for detection of RT using Paw and flow waveforms. Experts having Paw, flow and esophageal pressure (Pes) assessed automatic detection accuracy by comparison against visual assessment. Muscular pressure (Pmus) was measured from Pes during RT, triggered breaths and ineffective efforts.

Results

Tracings from 20 hypoxemic patients were used (mean age 65 ± 12 years, 65% male, ICU survival 75%). RT was present in 24% of the breaths ranging from 0 (patients paralyzed or in pressure support ventilation) to 93.3%. Automatic detection accuracy was 95.5%: sensitivity 83.1%, specificity 99.4%, positive predictive value 97.6%, negative predictive value 95.0% and kappa index of 0.87. Pmus of RT ranged from 1.3 to 36.8 cmH20, with a median of 8.7 cmH20. RT with breath stacking had the highest levels of Pmus, and RTs with no breath stacking were of similar magnitude than pressure support breaths.

Conclusion

An automated detection tool using airway pressure and flow can diagnose reverse triggering with excellent accuracy. RT generates a median Pmus of 9 cmH2O with important variability between and within patients.

Trial registration

BEARDS, NCT03447288.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.CrossRef Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.CrossRef
2.
go back to reference Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Luján M, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–41.CrossRef Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Luján M, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–41.CrossRef
3.
go back to reference Vaporidi K, Babalis D, Chytas A, Lilitsis E, Kondili E, Amargianitakis V, et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2017;43:184–91.CrossRef Vaporidi K, Babalis D, Chytas A, Lilitsis E, Kondili E, Amargianitakis V, et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2017;43:184–91.CrossRef
4.
go back to reference de Wit M, Miller KB, Green DA, Ostman HE, Gennings C, Epstein SK. Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med. 2009;37:2740–5. de Wit M, Miller KB, Green DA, Ostman HE, Gennings C, Epstein SK. Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med. 2009;37:2740–5.
5.
go back to reference Pham T, Brochard LJ, Slutsky AS. Mechanical ventilation: state of the art. Mayo Clin Proc. 2017;92:1382–400.CrossRef Pham T, Brochard LJ, Slutsky AS. Mechanical ventilation: state of the art. Mayo Clin Proc. 2017;92:1382–400.CrossRef
6.
go back to reference Akoumianaki E, Lyazidi A, Rey N, Matamis D, Perez-Martinez N, Giraud R, et al. Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest. 2013;143:927–38.CrossRef Akoumianaki E, Lyazidi A, Rey N, Matamis D, Perez-Martinez N, Giraud R, et al. Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest. 2013;143:927–38.CrossRef
7.
go back to reference Blokpoel RGT, Wolthuis DW, Koopman AA, Kneyber MCJ. Reverse triggering: a novel type of patient-ventilator asynchrony in mechanically ventilated children. Am J Respir Crit Care Med. 2019;200:e4-5.CrossRef Blokpoel RGT, Wolthuis DW, Koopman AA, Kneyber MCJ. Reverse triggering: a novel type of patient-ventilator asynchrony in mechanically ventilated children. Am J Respir Crit Care Med. 2019;200:e4-5.CrossRef
8.
go back to reference Bourenne J, Guervilly C, Mechati M, Hraiech S, Fraisse M, Bisbal M, et al. Variability of reverse triggering in deeply sedated ARDS patients. Intensive Care Med. 2019;45:725–6.CrossRef Bourenne J, Guervilly C, Mechati M, Hraiech S, Fraisse M, Bisbal M, et al. Variability of reverse triggering in deeply sedated ARDS patients. Intensive Care Med. 2019;45:725–6.CrossRef
9.
go back to reference de Vries HJ, Jonkman AH, Tuinman PR, Girbes ARJ, Heunks LMA. Respiratory entrainment and reverse triggering in a mechanically ventilated patient. Ann Am Thorac Soc. 2019;16:499–505.CrossRef de Vries HJ, Jonkman AH, Tuinman PR, Girbes ARJ, Heunks LMA. Respiratory entrainment and reverse triggering in a mechanically ventilated patient. Ann Am Thorac Soc. 2019;16:499–505.CrossRef
10.
go back to reference Delisle S, Charbonney E, Albert M, Ouellet P, Marsolais P, Rigollot M, et al. Patient-ventilator asynchrony due to reverse triggering occurring in brain-dead patients: clinical implications and physiological meaning. Am J Respir Crit Care Med. 2016;194:1166–8.CrossRef Delisle S, Charbonney E, Albert M, Ouellet P, Marsolais P, Rigollot M, et al. Patient-ventilator asynchrony due to reverse triggering occurring in brain-dead patients: clinical implications and physiological meaning. Am J Respir Crit Care Med. 2016;194:1166–8.CrossRef
11.
go back to reference Jochmans S, Mazerand S, Mercier des Rochettes E, Abdallah RI, Freeman SA, Monchi M. Reverse triggering with breath stacking in ARDS patients: the “optimum” can be the enemy of the “good.” Minerva Anestesiol. 2018;84:871–2.CrossRef Jochmans S, Mazerand S, Mercier des Rochettes E, Abdallah RI, Freeman SA, Monchi M. Reverse triggering with breath stacking in ARDS patients: the “optimum” can be the enemy of the “good.” Minerva Anestesiol. 2018;84:871–2.CrossRef
12.
go back to reference Su HK, Loring SH, Talmor D, Baedorf KE. Reverse triggering with breath stacking during mechanical ventilation results in large tidal volumes and transpulmonary pressure swings. Intensive Care Med. 2019;45:1161–2.CrossRef Su HK, Loring SH, Talmor D, Baedorf KE. Reverse triggering with breath stacking during mechanical ventilation results in large tidal volumes and transpulmonary pressure swings. Intensive Care Med. 2019;45:1161–2.CrossRef
13.
go back to reference Turbil E, Guérin C, Schwebel C, Terzi N. Reverse triggering: sometimes is not only the diaphragm. Am J Respir Crit Care Med. 2019;201:e24–5.CrossRef Turbil E, Guérin C, Schwebel C, Terzi N. Reverse triggering: sometimes is not only the diaphragm. Am J Respir Crit Care Med. 2019;201:e24–5.CrossRef
14.
go back to reference Yoshida T, Nakamura MAM, Morais CCA, Amato MBP, Kavanagh BP. Reverse triggering causes an injurious inflation pattern during mechanical ventilation. Am J Respir Crit Care Med. 2018;198:1096–9.CrossRef Yoshida T, Nakamura MAM, Morais CCA, Amato MBP, Kavanagh BP. Reverse triggering causes an injurious inflation pattern during mechanical ventilation. Am J Respir Crit Care Med. 2018;198:1096–9.CrossRef
15.
go back to reference Kallet RH, Campbell AR, Dicker RA, Katz JA, Mackersie RC. Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care. 2005;50:1623–31. Kallet RH, Campbell AR, Dicker RA, Katz JA, Mackersie RC. Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care. 2005;50:1623–31.
16.
go back to reference Petrillo GA, Glass L, Trippenbach T. Phase locking of the respiratory rhythm in cats to a mechanical ventilator. Can J Physiol Pharmacol. 1983;61:599–607.CrossRef Petrillo GA, Glass L, Trippenbach T. Phase locking of the respiratory rhythm in cats to a mechanical ventilator. Can J Physiol Pharmacol. 1983;61:599–607.CrossRef
17.
go back to reference Muzzin S, Baconnier P, Benchetrit G. Entrainment of respiratory rhythm by periodic lung inflation: effect of airflow rate and duration. Am J Physiol. 1992;263:R292-300. Muzzin S, Baconnier P, Benchetrit G. Entrainment of respiratory rhythm by periodic lung inflation: effect of airflow rate and duration. Am J Physiol. 1992;263:R292-300.
18.
go back to reference Graves C, Glass L, Laporta D, Meloche R, Grassino A. Respiratory phase locking during mechanical ventilation in anesthetized human subjects. Am J Physiol. 1986;250:R902–9. Graves C, Glass L, Laporta D, Meloche R, Grassino A. Respiratory phase locking during mechanical ventilation in anesthetized human subjects. Am J Physiol. 1986;250:R902–9.
19.
go back to reference Goligher EC, Brochard LJ, Reid WD, Fan E, Saarela O, Slutsky AS, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med. 2019;7:90–8.CrossRef Goligher EC, Brochard LJ, Reid WD, Fan E, Saarela O, Slutsky AS, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med. 2019;7:90–8.CrossRef
20.
go back to reference Georgopoulos D, Prinianakis G, Kondili E. Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med. 2006;32:34–47.CrossRef Georgopoulos D, Prinianakis G, Kondili E. Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med. 2006;32:34–47.CrossRef
21.
go back to reference Ramirez II, Arellano DH, Adasme RS, Landeros JM, Salinas FA, Vargas AG, et al. Ability of ICU health-care professionals to identify patient-ventilator asynchrony using waveform analysis. Respir Care. 2017;62:144–9.CrossRef Ramirez II, Arellano DH, Adasme RS, Landeros JM, Salinas FA, Vargas AG, et al. Ability of ICU health-care professionals to identify patient-ventilator asynchrony using waveform analysis. Respir Care. 2017;62:144–9.CrossRef
23.
go back to reference Gholami B, Phan TS, Haddad WM, Cason A, Mullis J, Price L, et al. Replicating human expertise of mechanical ventilation waveform analysis in detecting patient-ventilator cycling asynchrony using machine learning. Comput Biol Med. 2018;97:137–44.CrossRef Gholami B, Phan TS, Haddad WM, Cason A, Mullis J, Price L, et al. Replicating human expertise of mechanical ventilation waveform analysis in detecting patient-ventilator cycling asynchrony using machine learning. Comput Biol Med. 2018;97:137–44.CrossRef
24.
go back to reference Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.CrossRef Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.CrossRef
25.
go back to reference Donner A, Rotondi MA. Sample size requirements for interval estimation of the kappa statistic for interobserver agreement studies with a binary outcome and multiple raters. Int J Biostat. 2010;6:Article 31. Donner A, Rotondi MA. Sample size requirements for interval estimation of the kappa statistic for interobserver agreement studies with a binary outcome and multiple raters. Int J Biostat. 2010;6:Article 31.
26.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRef Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRef
27.
go back to reference Altman DG, Bland JM. Diagnostic tests. 1: sensitivity and specificity. BMJ. 1994a;308:1552.CrossRef Altman DG, Bland JM. Diagnostic tests. 1: sensitivity and specificity. BMJ. 1994a;308:1552.CrossRef
28.
go back to reference Altman DG, Bland JM. Diagnostic tests 2: predictive values. BMJ. 1994b;309:102.CrossRef Altman DG, Bland JM. Diagnostic tests 2: predictive values. BMJ. 1994b;309:102.CrossRef
29.
go back to reference Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O’Neal PV, Keane KA, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–44.CrossRef Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O’Neal PV, Keane KA, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–44.CrossRef
30.
go back to reference Murias G, de Haro C, Blanch L. Does this ventilated patient have asynchronies? Recognizing reverse triggering and entrainment at the bedside. Intensive Care Med. 2016;42:1058–61.CrossRef Murias G, de Haro C, Blanch L. Does this ventilated patient have asynchronies? Recognizing reverse triggering and entrainment at the bedside. Intensive Care Med. 2016;42:1058–61.CrossRef
31.
go back to reference Blanch L, Sales B, Montanya J, Lucangelo U, Garcia-Esquirol O, Villagra A, et al. Validation of the Better Care® system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensive Care Med. 2012;38:772–80.CrossRef Blanch L, Sales B, Montanya J, Lucangelo U, Garcia-Esquirol O, Villagra A, et al. Validation of the Better Care® system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensive Care Med. 2012;38:772–80.CrossRef
32.
go back to reference Sinderby C, Liu S, Colombo D, Camarotta G, Slutsky AS, Navalesi P, et al. An automated and standardized neural index to quantify patient-ventilator interaction. Crit Care Lond Engl. 2013;17:R239.CrossRef Sinderby C, Liu S, Colombo D, Camarotta G, Slutsky AS, Navalesi P, et al. An automated and standardized neural index to quantify patient-ventilator interaction. Crit Care Lond Engl. 2013;17:R239.CrossRef
33.
go back to reference Mulqueeny Q, Ceriana P, Carlucci A, Fanfulla F, Delmastro M, Nava S. Automatic detection of ineffective triggering and double triggering during mechanical ventilation. Intensive Care Med. 2007;33:2014–8.CrossRef Mulqueeny Q, Ceriana P, Carlucci A, Fanfulla F, Delmastro M, Nava S. Automatic detection of ineffective triggering and double triggering during mechanical ventilation. Intensive Care Med. 2007;33:2014–8.CrossRef
34.
go back to reference Sottile PD, Albers D, Higgins C, Mckeehan J, Moss MM. The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm. Crit Care Med. 2018;46:e151–7.CrossRef Sottile PD, Albers D, Higgins C, Mckeehan J, Moss MM. The association between ventilator dyssynchrony, delivered tidal volume, and sedation using a novel automated ventilator dyssynchrony detection algorithm. Crit Care Med. 2018;46:e151–7.CrossRef
35.
go back to reference Rodriguez PO, Tiribelli N, Gogniat E, Plotnikow GA, Fredes S, Fernandez Ceballos I, et al. Automatic detection of reverse-triggering related asynchronies during mechanical ventilation in ARDS patients using flow and pressure signals. J Clin Monit Comput. 2019;34:1239–46.CrossRef Rodriguez PO, Tiribelli N, Gogniat E, Plotnikow GA, Fredes S, Fernandez Ceballos I, et al. Automatic detection of reverse-triggering related asynchronies during mechanical ventilation in ARDS patients using flow and pressure signals. J Clin Monit Comput. 2019;34:1239–46.CrossRef
36.
go back to reference Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med. 2013;41:536–45.CrossRef Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med. 2013;41:536–45.CrossRef
37.
go back to reference Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.CrossRef Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.CrossRef
38.
go back to reference Orozco-Levi M, Lloreta J, Minguella J, Serrano S, Broquetas JM, Gea J. Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1734–9.CrossRef Orozco-Levi M, Lloreta J, Minguella J, Serrano S, Broquetas JM, Gea J. Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1734–9.CrossRef
39.
go back to reference Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–13.CrossRef Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–13.CrossRef
40.
go back to reference Gea J, Zhu E, Gáldiz JB, Comtois N, Salazkin I, Fiz JA, et al. Functional consequences of eccentric contractions of the diaphragm. Arch Bronconeumol. 2009;45:68–74.CrossRef Gea J, Zhu E, Gáldiz JB, Comtois N, Salazkin I, Fiz JA, et al. Functional consequences of eccentric contractions of the diaphragm. Arch Bronconeumol. 2009;45:68–74.CrossRef
41.
go back to reference Esteban A, Ferguson ND, Meade MO, Frutos-Vivar F, Apezteguia C, Brochard L, et al. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med. 2008;177:170–7.CrossRef Esteban A, Ferguson ND, Meade MO, Frutos-Vivar F, Apezteguia C, Brochard L, et al. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med. 2008;177:170–7.CrossRef
42.
go back to reference Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.CrossRef Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.CrossRef
Metadata
Title
Automated detection and quantification of reverse triggering effort under mechanical ventilation
Authors
Tài Pham
Jaume Montanya
Irene Telias
Thomas Piraino
Rudys Magrans
Rémi Coudroy
L. Felipe Damiani
Ricard Mellado Artigas
Matías Madorno
Lluis Blanch
Laurent Brochard
the BEARDS study investigators
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2021
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03387-3

Other articles of this Issue 1/2021

Critical Care 1/2021 Go to the issue