Skip to main content
Top
Published in: Critical Care 1/2020

Open Access 01-12-2020 | Transesophageal Echocardiography | Research

Transesophageal echocardiography-associated tracheal microaspiration and ventilator-associated pneumonia in intubated critically ill patients: a multicenter prospective observational study

Authors: François Bagate, Anahita Rouzé, Farid Zerimech, Florence Boissier, Vincent Labbe, Keyvan Razazi, Guillaume Carteaux, Nicolas de Prost, Malika Balduyck, Patrice Maboudou, Saad Nseir, Armand Mekontso Dessap

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Background

Microaspiration of gastric and oropharyngeal secretions is the main causative mechanism of ventilator-associated pneumonia (VAP). Transesophageal echocardiography (TEE) is a routine investigation tool in intensive care unit and could enhance microaspiration. This study aimed at evaluating the impact of TEE on microaspiration and VAP in intubated critically ill adult patients.

Methods

It is a four-center prospective observational study. Microaspiration biomarkers (pepsin and salivary amylase) concentrations were quantitatively measured on tracheal aspirates drawn before and after TEE. The primary endpoint was the percentage of patients with TEE-associated microaspiration, defined as: (1) ≥ 50% increase in biomarker concentration between pre-TEE and post-TEE samples, and (2) a significant post-TEE biomarker concentration (> 200 μg/L for pepsin and/or > 1685 IU/L for salivary amylase). Secondary endpoints included the development of VAP within three days after TEE and the evolution of tracheal cuff pressure throughout TEE.

Results

We enrolled 100 patients (35 females), with a median age of 64 (53–72) years. Of the 74 patients analyzed for biomarkers, 17 (23%) got TEE-associated microaspiration. However, overall, pepsin and salivary amylase levels were not significantly different between before and after TEE, with wide interindividual variability. VAP occurred in 19 patients (19%) within 3 days following TEE. VAP patients had a larger tracheal tube size and endured more attempts of TEE probe introduction than their counterparts but showed similar aspiration biomarker concentrations. TEE induced an increase in tracheal cuff pressure, especially during insertion and removal of the probe.

Conclusions

We could not find any association between TEE-associated microaspiration and the development of VAP during the three days following TEE in intubated critically ill patients. However, our study cannot formally rule out a role for TEE because of the high rate of VAP observed after TEE and the limitations of our methods.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165:867–903.CrossRef Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165:867–903.CrossRef
2.
go back to reference Heyland DK, Cook DJ, Griffith L, Keenan SP, Brun-Buisson C. The attributable morbidity and mortality of ventilator-associated pneumonia in the critically ill patient. The Canadian Critical Trials Group. Am J Respir Crit Care Med. 1999;159:1249–56.CrossRef Heyland DK, Cook DJ, Griffith L, Keenan SP, Brun-Buisson C. The attributable morbidity and mortality of ventilator-associated pneumonia in the critically ill patient. The Canadian Critical Trials Group. Am J Respir Crit Care Med. 1999;159:1249–56.CrossRef
3.
go back to reference Melsen WG, Rovers MM, Groenwold RHH, Bergmans DCJJ, Camus C, Bauer TT, et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect Dis. 2013;13:665–71.CrossRef Melsen WG, Rovers MM, Groenwold RHH, Bergmans DCJJ, Camus C, Bauer TT, et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect Dis. 2013;13:665–71.CrossRef
4.
go back to reference Cook D, De Jonghe B, Brochard L, Brun-Buisson C. Influence of airway management on ventilator-associated pneumonia: evidence from randomized trials. JAMA. 1998;279:781–7.CrossRef Cook D, De Jonghe B, Brochard L, Brun-Buisson C. Influence of airway management on ventilator-associated pneumonia: evidence from randomized trials. JAMA. 1998;279:781–7.CrossRef
5.
go back to reference Levine SA, Niederman MS. The impact of tracheal intubation on host defenses and risks for nosocomial pneumonia. Clin Chest Med. 1991;12:523–43.PubMed Levine SA, Niederman MS. The impact of tracheal intubation on host defenses and risks for nosocomial pneumonia. Clin Chest Med. 1991;12:523–43.PubMed
6.
go back to reference Marik PE. Aspiration pneumonitis and aspiration pneumonia. N Engl J Med. 2001;344:665–71.CrossRef Marik PE. Aspiration pneumonitis and aspiration pneumonia. N Engl J Med. 2001;344:665–71.CrossRef
7.
go back to reference Heyland DK, Drover JW, MacDonald S, Novak F, Lam M. Effect of postpyloric feeding on gastroesophageal regurgitation and pulmonary microaspiration: results of a randomized controlled trial. Crit Care Med. 2001;29:1495–501.CrossRef Heyland DK, Drover JW, MacDonald S, Novak F, Lam M. Effect of postpyloric feeding on gastroesophageal regurgitation and pulmonary microaspiration: results of a randomized controlled trial. Crit Care Med. 2001;29:1495–501.CrossRef
8.
go back to reference Nseir S, Zerimech F, Jaillette E, Artru F, Balduyck M. Microaspiration in intubated critically ill patients: diagnosis and prevention. Infect Disord Drug Targets. 2011;11:413–23.CrossRef Nseir S, Zerimech F, Jaillette E, Artru F, Balduyck M. Microaspiration in intubated critically ill patients: diagnosis and prevention. Infect Disord Drug Targets. 2011;11:413–23.CrossRef
9.
go back to reference Metheny NA, Dahms TE, Chang YH, Stewart BJ, Frank PA, Clouse RE. Detection of pepsin in tracheal secretions after forced small-volume aspirations of gastric juice. JPEN J Parenter Enter Nutr. 2004;28:79–84.CrossRef Metheny NA, Dahms TE, Chang YH, Stewart BJ, Frank PA, Clouse RE. Detection of pepsin in tracheal secretions after forced small-volume aspirations of gastric juice. JPEN J Parenter Enter Nutr. 2004;28:79–84.CrossRef
10.
go back to reference Nseir S, Zerimech F, De Jonckheere J, Alves I, Balduyck M, Durocher A. Impact of polyurethane on variations in tracheal cuff pressure in critically ill patients: a prospective observational study. Intensive Care Med. 2010;36:1156–63.CrossRef Nseir S, Zerimech F, De Jonckheere J, Alves I, Balduyck M, Durocher A. Impact of polyurethane on variations in tracheal cuff pressure in critically ill patients: a prospective observational study. Intensive Care Med. 2010;36:1156–63.CrossRef
11.
go back to reference Filloux B, Bedel A, Nseir S, Mathiaux J, Amadeo B, Clouzeau B, et al. Tracheal amylase dosage as a marker for microaspiration: a pilot study. Minerva Anestesiol. 2013;79:1003–10.PubMed Filloux B, Bedel A, Nseir S, Mathiaux J, Amadeo B, Clouzeau B, et al. Tracheal amylase dosage as a marker for microaspiration: a pilot study. Minerva Anestesiol. 2013;79:1003–10.PubMed
12.
go back to reference Dewavrin F, Zerimech F, Boyer A, Maboudou P, Balduyck M, Duhamel A, et al. Accuracy of alpha amylase in diagnosing microaspiration in intubated critically-ill patients. PLoS ONE. 2014;9:e90851.CrossRef Dewavrin F, Zerimech F, Boyer A, Maboudou P, Balduyck M, Duhamel A, et al. Accuracy of alpha amylase in diagnosing microaspiration in intubated critically-ill patients. PLoS ONE. 2014;9:e90851.CrossRef
13.
go back to reference Vieillard-Baron A, Millington SJ, Sanfilippo F, Chew M, Diaz-Gomez J, McLean A, et al. A decade of progress in critical care echocardiography: a narrative review. Intensive Care Med. 2019;45:770–88.CrossRef Vieillard-Baron A, Millington SJ, Sanfilippo F, Chew M, Diaz-Gomez J, McLean A, et al. A decade of progress in critical care echocardiography: a narrative review. Intensive Care Med. 2019;45:770–88.CrossRef
14.
go back to reference Garcia YA, Quintero L, Singh K, Lakticova V, Iakovou A, Koenig SJ, et al. Feasibility, safety, and utility of advanced critical care transesophageal echocardiography performed by pulmonary/critical care fellows in a medical ICU. Chest. 2017;152:736–41.CrossRef Garcia YA, Quintero L, Singh K, Lakticova V, Iakovou A, Koenig SJ, et al. Feasibility, safety, and utility of advanced critical care transesophageal echocardiography performed by pulmonary/critical care fellows in a medical ICU. Chest. 2017;152:736–41.CrossRef
15.
go back to reference Hüttemann E, Schelenz C, Kara F, Chatzinikolaou K, Reinhart K. The use and safety of transoesophageal echocardiography in the general ICU—a minireview. Acta Anaesthesiol Scand. 2004;48:827–36.CrossRef Hüttemann E, Schelenz C, Kara F, Chatzinikolaou K, Reinhart K. The use and safety of transoesophageal echocardiography in the general ICU—a minireview. Acta Anaesthesiol Scand. 2004;48:827–36.CrossRef
16.
go back to reference Mentec H, Vignon P, Terre S, Cholley B, Roupie E, Legrand P, et al. Frequency of bacteremia associated with transesophageal echocardiography in intensive care unit patients: a prospective study of 139 patients. Crit Care Med. 1995;23:1194–9.CrossRef Mentec H, Vignon P, Terre S, Cholley B, Roupie E, Legrand P, et al. Frequency of bacteremia associated with transesophageal echocardiography in intensive care unit patients: a prospective study of 139 patients. Crit Care Med. 1995;23:1194–9.CrossRef
17.
go back to reference Nseir S, Zerimech F, Fournier C, Lubret R, Ramon P, Durocher A, et al. Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients. Am J Respir Crit Care Med. 2011;184:1041–7.CrossRef Nseir S, Zerimech F, Fournier C, Lubret R, Ramon P, Durocher A, et al. Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients. Am J Respir Crit Care Med. 2011;184:1041–7.CrossRef
18.
go back to reference American Thoracic S, Infectious Diseases Society of A. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416. American Thoracic S, Infectious Diseases Society of A. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.
19.
go back to reference Klompas M, Branson R, Eichenwald EC, Greene LR, Howell MD, Lee G, et al. Strategies to prevent ventilator-associated pneumonia in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35:915–36.CrossRef Klompas M, Branson R, Eichenwald EC, Greene LR, Howell MD, Lee G, et al. Strategies to prevent ventilator-associated pneumonia in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35:915–36.CrossRef
20.
go back to reference Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRef Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRef
21.
go back to reference Metheny NA, Clouse RE, Chang YH, Stewart BJ, Oliver DA, Kollef MH. Tracheobronchial aspiration of gastric contents in critically ill tube-fed patients: frequency, outcomes, and risk factors. Crit Care Med. 2006;34:1007–15.CrossRef Metheny NA, Clouse RE, Chang YH, Stewart BJ, Oliver DA, Kollef MH. Tracheobronchial aspiration of gastric contents in critically ill tube-fed patients: frequency, outcomes, and risk factors. Crit Care Med. 2006;34:1007–15.CrossRef
22.
go back to reference Metheny NA, Davis-Jackson J, Stewart BJ. Effectiveness of an aspiration risk-reduction protocol. Nurs Res. 2010;59:18–25.CrossRef Metheny NA, Davis-Jackson J, Stewart BJ. Effectiveness of an aspiration risk-reduction protocol. Nurs Res. 2010;59:18–25.CrossRef
23.
go back to reference Palmer LB. Ventilator-associated infection. Curr Opin Pulm Med. 2009;15:230–5.CrossRef Palmer LB. Ventilator-associated infection. Curr Opin Pulm Med. 2009;15:230–5.CrossRef
24.
go back to reference Weiss CH, Moazed F, DiBardino D, Swaroop M, Wunderink RG. Bronchoalveolar lavage amylase is associated with risk factors for aspiration and predicts bacterial pneumonia. Crit Care Med. 2013;41:765–73.CrossRef Weiss CH, Moazed F, DiBardino D, Swaroop M, Wunderink RG. Bronchoalveolar lavage amylase is associated with risk factors for aspiration and predicts bacterial pneumonia. Crit Care Med. 2013;41:765–73.CrossRef
25.
go back to reference Samanta S, Poddar B, Azim A, Singh RK, Gurjar M, Baronia AK. Significance of mini bronchoalveolar lavage fluid amylase level in ventilator-associated pneumonia: a prospective observational study. Crit Care Med. 2018;46:71–8.CrossRef Samanta S, Poddar B, Azim A, Singh RK, Gurjar M, Baronia AK. Significance of mini bronchoalveolar lavage fluid amylase level in ventilator-associated pneumonia: a prospective observational study. Crit Care Med. 2018;46:71–8.CrossRef
26.
go back to reference Jaillette E, Girault C, Brunin G, Zerimech F, Behal H, Chiche A, et al. Impact of tapered-cuff tracheal tube on microaspiration of gastric contents in intubated critically ill patients: a multicenter cluster-randomized cross-over controlled trial. Intensive Care Med. 2017;43:1562–71.CrossRef Jaillette E, Girault C, Brunin G, Zerimech F, Behal H, Chiche A, et al. Impact of tapered-cuff tracheal tube on microaspiration of gastric contents in intubated critically ill patients: a multicenter cluster-randomized cross-over controlled trial. Intensive Care Med. 2017;43:1562–71.CrossRef
27.
go back to reference Millot G, Boddaert P, Parmentier-Decrucq E, Palud A, Balduyck M, Maboudou P, et al. Impact of subglottic secretion drainage on microaspiration in critically ill patients: a prospective observational study. Ann Transl Med. 2018;6:416.CrossRef Millot G, Boddaert P, Parmentier-Decrucq E, Palud A, Balduyck M, Maboudou P, et al. Impact of subglottic secretion drainage on microaspiration in critically ill patients: a prospective observational study. Ann Transl Med. 2018;6:416.CrossRef
28.
go back to reference Rello J, Sonora R, Jubert P, Artigas A, Rue M, Valles J. Pneumonia in intubated patients: role of respiratory airway care. Am J Respir Crit Care Med. 1996;154:111–5.CrossRef Rello J, Sonora R, Jubert P, Artigas A, Rue M, Valles J. Pneumonia in intubated patients: role of respiratory airway care. Am J Respir Crit Care Med. 1996;154:111–5.CrossRef
29.
go back to reference Pitts R, Fisher D, Sulemanji D, Kratohvil J, Jiang Y, Kacmarek R. Variables affecting leakage past endotracheal tube cuffs: a bench study. Intensive Care Med. 2010;36:2066–73.CrossRef Pitts R, Fisher D, Sulemanji D, Kratohvil J, Jiang Y, Kacmarek R. Variables affecting leakage past endotracheal tube cuffs: a bench study. Intensive Care Med. 2010;36:2066–73.CrossRef
30.
go back to reference Camprubí-Rimblas M, Tantinyà N, Bringué J, Guillamat-Prats R, Artigas A. Anticoagulant therapy in acute respiratory distress syndrome. Ann Transl Med. 2018;6:36.CrossRef Camprubí-Rimblas M, Tantinyà N, Bringué J, Guillamat-Prats R, Artigas A. Anticoagulant therapy in acute respiratory distress syndrome. Ann Transl Med. 2018;6:36.CrossRef
31.
go back to reference Juschten J, Tuinman PR, Juffermans NP, Dixon B, Levi M, Schultz MJ. Nebulized anticoagulants in lung injury in critically ill patients-an updated systematic review of preclinical and clinical studies. Ann Transl Med. 2017;5:444.CrossRef Juschten J, Tuinman PR, Juffermans NP, Dixon B, Levi M, Schultz MJ. Nebulized anticoagulants in lung injury in critically ill patients-an updated systematic review of preclinical and clinical studies. Ann Transl Med. 2017;5:444.CrossRef
32.
go back to reference Bandeshe H, Boots R, Dulhunty J, Dunlop R, Holley A, Jarrett P, et al. Is inhaled prophylactic heparin useful for prevention and Management of Pneumonia in ventilated ICU patients? The IPHIVAP investigators of the Australian and New Zealand Intensive Care Society Clinical Trials Group. J Crit Care. 2016;34:95–102.CrossRef Bandeshe H, Boots R, Dulhunty J, Dunlop R, Holley A, Jarrett P, et al. Is inhaled prophylactic heparin useful for prevention and Management of Pneumonia in ventilated ICU patients? The IPHIVAP investigators of the Australian and New Zealand Intensive Care Society Clinical Trials Group. J Crit Care. 2016;34:95–102.CrossRef
33.
go back to reference Sole ML, Talbert S, Yan X, Penoyer D, Mehta D, Bennett M, et al. Impact of deep oropharyngeal suctioning on microaspiration, ventilator events, and clinical outcomes: a randomized clinical trial. J Adv Nurs. 2019;75:3045–57.CrossRef Sole ML, Talbert S, Yan X, Penoyer D, Mehta D, Bennett M, et al. Impact of deep oropharyngeal suctioning on microaspiration, ventilator events, and clinical outcomes: a randomized clinical trial. J Adv Nurs. 2019;75:3045–57.CrossRef
34.
go back to reference Mao Z, Gao L, Wang G, Liu C, Zhao Y, Gu W, et al. Subglottic secretion suction for preventing ventilator-associated pneumonia: an updated meta-analysis and trial sequential analysis. Crit Care Lond Engl. 2016;20:353.CrossRef Mao Z, Gao L, Wang G, Liu C, Zhao Y, Gu W, et al. Subglottic secretion suction for preventing ventilator-associated pneumonia: an updated meta-analysis and trial sequential analysis. Crit Care Lond Engl. 2016;20:353.CrossRef
35.
go back to reference Wang L, Li X, Yang Z, Tang X, Yuan Q, Deng L, et al. Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation. Cochrane Database Syst Rev. 2016;1:CD009946. Wang L, Li X, Yang Z, Tang X, Yuan Q, Deng L, et al. Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation. Cochrane Database Syst Rev. 2016;1:CD009946.
36.
go back to reference Hogue CW, Lappas GD, Creswell LL, Ferguson TB, Sample M, Pugh D, et al. Swallowing dysfunction after cardiac operations: Associated adverse outcomes and risk factors including intraoperative transesophageal echocardiography. J Thorac Cardiovasc Surg. 1995;110:517–22.CrossRef Hogue CW, Lappas GD, Creswell LL, Ferguson TB, Sample M, Pugh D, et al. Swallowing dysfunction after cardiac operations: Associated adverse outcomes and risk factors including intraoperative transesophageal echocardiography. J Thorac Cardiovasc Surg. 1995;110:517–22.CrossRef
37.
go back to reference Toews GB, Gross GN, Pierce AK. The relationship of inoculum size to lung bacterial clearance and phagocytic cell response in mice. Am Rev Respir Dis. 1979;120:559–66.PubMed Toews GB, Gross GN, Pierce AK. The relationship of inoculum size to lung bacterial clearance and phagocytic cell response in mice. Am Rev Respir Dis. 1979;120:559–66.PubMed
Metadata
Title
Transesophageal echocardiography-associated tracheal microaspiration and ventilator-associated pneumonia in intubated critically ill patients: a multicenter prospective observational study
Authors
François Bagate
Anahita Rouzé
Farid Zerimech
Florence Boissier
Vincent Labbe
Keyvan Razazi
Guillaume Carteaux
Nicolas de Prost
Malika Balduyck
Patrice Maboudou
Saad Nseir
Armand Mekontso Dessap
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03380-w

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue