Skip to main content
Top
Published in: Critical Care 1/2020

01-12-2020 | Echocardiography | Research

Pulse pressure and end-tidal carbon dioxide for monitoring low native cardiac output during veno-arterial ECLS: a prospective observational study

Authors: Marc Mourad, Jacob Eliet, Norddine Zeroual, Marine Saour, Pierre Sentenac, Federico Manna, Nicolas Molinari, Thomas Gandet, Pascal H. Colson, Philippe Gaudard

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Background

Veno-arterial extracorporeal life support (VA-ECLS) results in cardiopulmonary shunting with reduced native cardiac output (NCO). Low NCO occurrence is common and associated with risk of thromboembolic and pulmonary complications. Practical tools for monitoring NCO during VA-ECLS would therefore be valuable. Pulse pressure (PP) and end-tidal carbon dioxide (EtCO2) are known to be related to cardiac output. We have designed a study to test whether PP and EtCO2 were efficient for the monitoring of NCO during VA-ECLS.

Methods

In this prospective single-center observational study, patients who underwent a VA-ECLS for cardiogenic shock from January 2016 to October 2017 were included, provided low NCO was suspected by a PP < 20 mmHg. NCO was measured with pulmonary artery catheter or echocardiography and compared to PP and EtCO2. The ability of PP and EtCO2 to predict NCO < 1 L/min was evaluated with receiver operating characteristics (ROC) curves.

Results

Among the 106 patients treated with VA-ECLS for cardiogenic shock during the study period, 26 were studied, allowing the collection of 196 study points. PP and EtCO2 relationships with NCO were nonlinear and showed strong correlations for NCO < 2 L/min (r = 0.69 and r = 0.78 respectively). A PP < 15 mmHg and EtCO2 < 14 mmHg had good predictive values for detecting NCO < 1 L/min (area under ROC curve 0.93 [95% CI 0.89–0.96] and 0.97 [95% CI 0.94–0.99] respectively, p = 0.058).

Conclusions

PP and EtCO2 may offer an accurate real-time monitoring of low NCO events during VA-ECLS support. Further studies are needed to show if their utilization may help to implement therapeutic strategies in order to prevent thromboembolic and respiratory complications associated with VA-ECLS, and to improve patients’ prognosis.

Trial registration

NCT03323268, July 12, 2016
Literature
1.
go back to reference Stretch R, Sauer CM, Yuh DD, et al. National trends in the utilization of short-term mechanical circulatory support: incidence, outcomes, and cost analysis. J Am Coll Cardiol. 2014;64:1407–15.CrossRef Stretch R, Sauer CM, Yuh DD, et al. National trends in the utilization of short-term mechanical circulatory support: incidence, outcomes, and cost analysis. J Am Coll Cardiol. 2014;64:1407–15.CrossRef
2.
go back to reference Combes A, Leprince P, Luyt C-E, et al. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med. 2008;36:1404–11.CrossRef Combes A, Leprince P, Luyt C-E, et al. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med. 2008;36:1404–11.CrossRef
3.
go back to reference Chen Y-S, Lin J-W, Yu H-Y, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet Lond Engl. 2008;372:554–61.CrossRef Chen Y-S, Lin J-W, Yu H-Y, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet Lond Engl. 2008;372:554–61.CrossRef
4.
go back to reference Vardi A, Jessen ME, Chao RY, et al. Effect of extracorporeal membrane oxygenation flow on pulmonary capillary blood flow. Crit Care Med. 1995;23:726–32.CrossRef Vardi A, Jessen ME, Chao RY, et al. Effect of extracorporeal membrane oxygenation flow on pulmonary capillary blood flow. Crit Care Med. 1995;23:726–32.CrossRef
5.
go back to reference Williams B, Bernstein W. Review of venoarterial extracorporeal membrane oxygenation and development of intracardiac thrombosis in adult cardiothoracic patients. J Extra Corpor Technol. 2016;48:162–7.PubMedPubMedCentral Williams B, Bernstein W. Review of venoarterial extracorporeal membrane oxygenation and development of intracardiac thrombosis in adult cardiothoracic patients. J Extra Corpor Technol. 2016;48:162–7.PubMedPubMedCentral
6.
go back to reference Unai S, Nguyen M-L, Tanaka D, et al. Clinical significance of spontaneous echo contrast on extracorporeal membrane oxygenation. Ann Thorac Surg. 2017;103:773–8.CrossRef Unai S, Nguyen M-L, Tanaka D, et al. Clinical significance of spontaneous echo contrast on extracorporeal membrane oxygenation. Ann Thorac Surg. 2017;103:773–8.CrossRef
7.
go back to reference Koul B, Wollmer P, Willen H, et al. Venoarterial extracorporeal membrane oxygenation--how safe is it? Evaluation with a new experimental model. J Thorac Cardiovasc Surg. 1992;104:579–84.CrossRef Koul B, Wollmer P, Willen H, et al. Venoarterial extracorporeal membrane oxygenation--how safe is it? Evaluation with a new experimental model. J Thorac Cardiovasc Surg. 1992;104:579–84.CrossRef
8.
go back to reference Extracorporeal Life Support Organization: ELSO Adult Cardiac Failure Supplement to the ELSO General Guidelines v1.3. Ann Arbor; 2013. http://elso.org/. Extracorporeal Life Support Organization: ELSO Adult Cardiac Failure Supplement to the ELSO General Guidelines v1.3. Ann Arbor; 2013. http://​elso.​org/​.
9.
go back to reference Truby L, Hart S, Takeda K, et al. Management and outcome of left ventricular distention during venoarterial extracorporeal membrane oxygenation support. J Heart Lung Transplant. 2015;34:S83–4.CrossRef Truby L, Hart S, Takeda K, et al. Management and outcome of left ventricular distention during venoarterial extracorporeal membrane oxygenation support. J Heart Lung Transplant. 2015;34:S83–4.CrossRef
10.
go back to reference Cevasco M, Takayama H, Ando M, et al. Left ventricular distension and venting strategies for patients on venoarterial extracorporeal membrane oxygenation. J Thorac Dis. 2019;11:1676–83.CrossRef Cevasco M, Takayama H, Ando M, et al. Left ventricular distension and venting strategies for patients on venoarterial extracorporeal membrane oxygenation. J Thorac Dis. 2019;11:1676–83.CrossRef
11.
go back to reference Schrage B, Becher M, Schwarzl M, et al. Percutaneous unloading of the left ventricle during extracorporeal membrane oxygenation in cardiogenic shock - ongoing experience from a high-volume centre. J Heart Lung Transplant. 2018;37:S28.CrossRef Schrage B, Becher M, Schwarzl M, et al. Percutaneous unloading of the left ventricle during extracorporeal membrane oxygenation in cardiogenic shock - ongoing experience from a high-volume centre. J Heart Lung Transplant. 2018;37:S28.CrossRef
12.
go back to reference Gaudard P, Mourad M, Eliet J, et al. Management and outcome of patients supported with Impella 5.0 for refractory cardiogenic shock. Crit Care Lond Engl. 2015;19:363.CrossRef Gaudard P, Mourad M, Eliet J, et al. Management and outcome of patients supported with Impella 5.0 for refractory cardiogenic shock. Crit Care Lond Engl. 2015;19:363.CrossRef
13.
go back to reference Mourad M, Gaudard P, De La Arena P, et al. Circulatory support with extracorporeal membrane oxygenation and/or Impella for cardiogenic shock during myocardial infarction. ASAIO J. 2018;64:708–14.CrossRef Mourad M, Gaudard P, De La Arena P, et al. Circulatory support with extracorporeal membrane oxygenation and/or Impella for cardiogenic shock during myocardial infarction. ASAIO J. 2018;64:708–14.CrossRef
14.
go back to reference Russo JJ, Aleksova N, Ian P, et al. Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol. 2019;73:654–62.CrossRef Russo JJ, Aleksova N, Ian P, et al. Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol. 2019;73:654–62.CrossRef
15.
go back to reference Norris SL, King EG, Grace M, et al. Thermodilution cardiac output--an in vitro model of low flow states. Crit Care Med. 1986;14:57–9.CrossRef Norris SL, King EG, Grace M, et al. Thermodilution cardiac output--an in vitro model of low flow states. Crit Care Med. 1986;14:57–9.CrossRef
16.
go back to reference Reuter DA, Huang C, Edrich T, et al. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;110:799–811.CrossRef Reuter DA, Huang C, Edrich T, et al. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;110:799–811.CrossRef
17.
go back to reference Shibutani K, Muraoka M, Shirasaki S, et al. Do changes in end-tidal PCO2 quantitatively reflect changes in cardiac output? Anesth Analg. 1994;79:829–83.CrossRef Shibutani K, Muraoka M, Shirasaki S, et al. Do changes in end-tidal PCO2 quantitatively reflect changes in cardiac output? Anesth Analg. 1994;79:829–83.CrossRef
18.
go back to reference Maslow A, Stearns G, Bert A, et al. Monitoring end-tidal carbon dioxide during weaning from cardiopulmonary bypass in patients without significant lung disease. Anesth Analg. 2001;92:306–13.CrossRef Maslow A, Stearns G, Bert A, et al. Monitoring end-tidal carbon dioxide during weaning from cardiopulmonary bypass in patients without significant lung disease. Anesth Analg. 2001;92:306–13.CrossRef
19.
go back to reference Eliet J, Gaudard P, Zeroual N, et al. Effect of Impella during veno-arterial extracorporeal membrane oxygenation on pulmonary artery flow as assessed by end-tidal carbon dioxide. ASAIO J. 2018;64:502–7.CrossRef Eliet J, Gaudard P, Zeroual N, et al. Effect of Impella during veno-arterial extracorporeal membrane oxygenation on pulmonary artery flow as assessed by end-tidal carbon dioxide. ASAIO J. 2018;64:502–7.CrossRef
20.
go back to reference Schmidt M, Pellegrino V, Combes A, et al. Mechanical ventilation during extracorporeal membrane oxygenation. Crit Care Lond Engl. 2014;18:203.CrossRef Schmidt M, Pellegrino V, Combes A, et al. Mechanical ventilation during extracorporeal membrane oxygenation. Crit Care Lond Engl. 2014;18:203.CrossRef
21.
go back to reference Peter Bruce, Andrew Bruce. Practical statistics for data scientists. Sebastopol: O’Reilly Media; 2017. Peter Bruce, Andrew Bruce. Practical statistics for data scientists. Sebastopol: O’Reilly Media; 2017.
22.
go back to reference Rao P, Khalpey Z, Smith R, Burkhoo D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest. Circ Heart Fail. 2018;11:e004905.CrossRef Rao P, Khalpey Z, Smith R, Burkhoo D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest. Circ Heart Fail. 2018;11:e004905.CrossRef
23.
go back to reference Park B-W, Seo D-C, Moon I-K, et al. Pulse pressure as a prognostic marker in patients receiving extracorporeal life support. Resuscitation. 2013;84:1404–8.CrossRef Park B-W, Seo D-C, Moon I-K, et al. Pulse pressure as a prognostic marker in patients receiving extracorporeal life support. Resuscitation. 2013;84:1404–8.CrossRef
24.
go back to reference Weber C, Deppe A-C, Sabashnikov A, et al. Left ventricular thrombus formation in patients undergoing femoral veno-arterial extracorporeal membrane oxygenation. Perfusion. 2018;33:283–28.CrossRef Weber C, Deppe A-C, Sabashnikov A, et al. Left ventricular thrombus formation in patients undergoing femoral veno-arterial extracorporeal membrane oxygenation. Perfusion. 2018;33:283–28.CrossRef
25.
go back to reference Madershahian N, Weber C, Scherner M, et al. Thrombosis of the aortic root and ascending aorta during extracorporeal membrane oxygenation. Intensive Care Med. 2014;40:432–43.CrossRef Madershahian N, Weber C, Scherner M, et al. Thrombosis of the aortic root and ascending aorta during extracorporeal membrane oxygenation. Intensive Care Med. 2014;40:432–43.CrossRef
26.
go back to reference Haller M, Zöllner C, Briegel J, et al. Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med. 1995;23:860–6.CrossRef Haller M, Zöllner C, Briegel J, et al. Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med. 1995;23:860–6.CrossRef
27.
28.
go back to reference Vennin S, Li Y, Willemet M, et al. Identifying hemodynamic determinants of pulse pressure. A combine numerical and physiological approach. Hypertension. 2017;70:1176–82.CrossRef Vennin S, Li Y, Willemet M, et al. Identifying hemodynamic determinants of pulse pressure. A combine numerical and physiological approach. Hypertension. 2017;70:1176–82.CrossRef
29.
go back to reference Lim HS. The effect of Impella CP on cardiopulmonary physiology during venoarterial extracorporeal membrane oxygenation support. Artif Organs. 2017;41:1109–12.CrossRef Lim HS. The effect of Impella CP on cardiopulmonary physiology during venoarterial extracorporeal membrane oxygenation support. Artif Organs. 2017;41:1109–12.CrossRef
30.
go back to reference Bachmann KF, Haenggi M, Jakob S, Takala J, Gattinoni L, Berger D. Gas exchange calculation may estimate changes in pulmonary blood flow during veno-arterial extracorporeal membrane oxygenation in a porcine model. Am J Physiol Lung Cell Mol Physiol. 2020;318:L1211–21.CrossRef Bachmann KF, Haenggi M, Jakob S, Takala J, Gattinoni L, Berger D. Gas exchange calculation may estimate changes in pulmonary blood flow during veno-arterial extracorporeal membrane oxygenation in a porcine model. Am J Physiol Lung Cell Mol Physiol. 2020;318:L1211–21.CrossRef
31.
go back to reference Downs JB. PaCO2, EtCO2 and gradient. In: CAPNOGRAPHY 2nd edition, Gravenstein JS, Jaffe MB, Gravenstein N, Paulus DA, editors. Cambridge: Cambridge University Press; 2011. p. 225–30. Downs JB. PaCO2, EtCO2 and gradient. In: CAPNOGRAPHY 2nd edition, Gravenstein JS, Jaffe MB, Gravenstein N, Paulus DA, editors. Cambridge: Cambridge University Press; 2011. p. 225–30.
32.
go back to reference Isserles SA, Breen PH. Can changes in end-tidal PCO2 measure changes in cardiac output? Anesth Analg. 1991;73:808–14.CrossRef Isserles SA, Breen PH. Can changes in end-tidal PCO2 measure changes in cardiac output? Anesth Analg. 1991;73:808–14.CrossRef
Metadata
Title
Pulse pressure and end-tidal carbon dioxide for monitoring low native cardiac output during veno-arterial ECLS: a prospective observational study
Authors
Marc Mourad
Jacob Eliet
Norddine Zeroual
Marine Saour
Pierre Sentenac
Federico Manna
Nicolas Molinari
Thomas Gandet
Pascal H. Colson
Philippe Gaudard
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03280-z

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue