Skip to main content
Top
Published in: Critical Care 1/2020

01-12-2020 | Autopsy | Research

Brain tight junction protein expression in sepsis in an autopsy series

Authors: Kristo Erikson, Hannu Tuominen, Merja Vakkala, Janne Henrik Liisanantti, Tuomo Karttunen, Hannu Syrjälä, Tero Ilmari Ala-Kokko

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Background

Neuroinflammation often develops in sepsis along with increasing permeability of the blood-brain barrier (BBB), which leads to septic encephalopathy. The barrier is formed by tight junction structures between the cerebral endothelial cells. We investigated the expression of tight junction proteins related to endothelial permeability in brain autopsy specimens in critically ill patients deceased with sepsis and analyzed the relationship of BBB damage with measures of systemic inflammation and systemic organ dysfunction.

Methods

The case series included all (385) adult patients deceased due to sepsis in the years 2007–2015 with available brain specimens taken at autopsy. Specimens were categorized according to anatomical location (cerebrum, cerebellum). The immunohistochemical stainings were performed for occludin, ZO-1, and claudin. Patients were categorized as having BBB damage if there was no expression of occludin in the endothelium of cerebral microvessels.

Results

Brain tissue samples were available in 47 autopsies, of which 38% (18/47) had no expression of occludin in the endothelium of cerebral microvessels, 34% (16/47) developed multiple organ failure before death, and 74.5% (35/47) had septic shock.
The deceased with BBB damage had higher maximum SOFA scores (16 vs. 14, p = 0.04) and more often had procalcitonin levels above 10 μg/L (56% vs. 28%, p = 0.045) during their ICU stay. BBB damage in the cerebellum was more common in cases with C-reactive protein (CRP) above 100 mg/L as compared with CRP less than 100 (69% vs. 25%, p = 0.025).

Conclusions

In fatal sepsis, damaged BBB defined as a loss of cerebral endothelial expression of occludin is related with severe organ dysfunction and systemic inflammation.
Literature
1.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent J, Angus DC. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent J, Angus DC. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef
2.
go back to reference McGrane S, Girard TD, Thompson JL, Shintani AK, Woodworth A, Ely EW, Pandharipande PP. Procalcitonin and C-reactive protein levels at admission as predictors of duration of acute brain dysfunction in critically ill patients. Critical care (London, England). 2011;15(2):R78.CrossRef McGrane S, Girard TD, Thompson JL, Shintani AK, Woodworth A, Ely EW, Pandharipande PP. Procalcitonin and C-reactive protein levels at admission as predictors of duration of acute brain dysfunction in critically ill patients. Critical care (London, England). 2011;15(2):R78.CrossRef
3.
go back to reference Ziaja M. Septic encephalopathy. Curr Neurol Neurosci Rep. 2013;13(10):1–7.CrossRef Ziaja M. Septic encephalopathy. Curr Neurol Neurosci Rep. 2013;13(10):1–7.CrossRef
5.
go back to reference Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG, Vasilevskis EE, Shintani AK, Moons KG, Geevarghese SK, Canonico A, Hopkins RO, Bernard GR, Dittus RS, Ely EW. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369(14):1306–16.PubMedPubMedCentralCrossRef Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG, Vasilevskis EE, Shintani AK, Moons KG, Geevarghese SK, Canonico A, Hopkins RO, Bernard GR, Dittus RS, Ely EW. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369(14):1306–16.PubMedPubMedCentralCrossRef
6.
go back to reference Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2009;37(1):13–25.PubMedCrossRef Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2009;37(1):13–25.PubMedCrossRef
8.
go back to reference Taccone FS, Su F, Pierrakos C, He X, James S, Dewitte O, Vincent J, De Backer D. Cerebral microcirculation is impaired during sepsis: an experimental study. Critical Care (London, England). 2010;14(4):R140.CrossRef Taccone FS, Su F, Pierrakos C, He X, James S, Dewitte O, Vincent J, De Backer D. Cerebral microcirculation is impaired during sepsis: an experimental study. Critical Care (London, England). 2010;14(4):R140.CrossRef
9.
go back to reference du Moulin GC, Paterson D, Hedley-Whyte J, Broitman SA. E. coli peritonitis and bacteremia cause increased blood-brain barrier permeability. Brain Res. 1985;340(2):261–8.PubMedCrossRef du Moulin GC, Paterson D, Hedley-Whyte J, Broitman SA. E. coli peritonitis and bacteremia cause increased blood-brain barrier permeability. Brain Res. 1985;340(2):261–8.PubMedCrossRef
10.
go back to reference Stubbs DJ, Yamamoto AK, Menon DK. Imaging in sepsis-associated encephalopathy—insights and opportunities. Nat Rev Neurol. 2013;9(10):551–61.PubMedCrossRef Stubbs DJ, Yamamoto AK, Menon DK. Imaging in sepsis-associated encephalopathy—insights and opportunities. Nat Rev Neurol. 2013;9(10):551–61.PubMedCrossRef
11.
go back to reference Piazza O, Cotena S, De Robertis E, Caranci F, Tufano R. Sepsis associated encephalopathy studied by MRI and cerebral spinal fluid S100B measurement. Neurochem Res. 2009;34(7):1289–92.PubMedCrossRef Piazza O, Cotena S, De Robertis E, Caranci F, Tufano R. Sepsis associated encephalopathy studied by MRI and cerebral spinal fluid S100B measurement. Neurochem Res. 2009;34(7):1289–92.PubMedCrossRef
12.
go back to reference Ehler J, Barrett LK, Taylor V, Groves M, Scaravilli F, Wittstock M, Kolbaske S, Grossmann A, Henschel J, Gloger M, Sharshar T, Chretien F, Gray F, Nöldge-Schomburg G, Singer M, Sauer M, Petzold A. Translational evidence for two distinct patterns of neuroaxonal injury in sepsis: a longitudinal, prospective translational study. Critical Care (London, England). 2017;21(1):262.CrossRef Ehler J, Barrett LK, Taylor V, Groves M, Scaravilli F, Wittstock M, Kolbaske S, Grossmann A, Henschel J, Gloger M, Sharshar T, Chretien F, Gray F, Nöldge-Schomburg G, Singer M, Sauer M, Petzold A. Translational evidence for two distinct patterns of neuroaxonal injury in sepsis: a longitudinal, prospective translational study. Critical Care (London, England). 2017;21(1):262.CrossRef
13.
go back to reference Warford J, Lamport A, Kennedy B, Easton AS: Human brain chemokine and cytokine expression in sepsis: a report of three cases. The Canadian journal of neurological sciences J Can Sci Neurol 2017, 44(1):96–104. Warford J, Lamport A, Kennedy B, Easton AS: Human brain chemokine and cytokine expression in sepsis: a report of three cases. The Canadian journal of neurological sciences J Can Sci Neurol 2017, 44(1):96–104.
14.
go back to reference Anonymous American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Critical Care Med. 1992;20(6):864–74.CrossRef Anonymous American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Critical Care Med. 1992;20(6):864–74.CrossRef
15.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.PubMedCrossRef Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.PubMedCrossRef
16.
go back to reference Vincent J, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Crit Care Med. 1998;26(11):1793–800.PubMedCrossRef Vincent J, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Crit Care Med. 1998;26(11):1793–800.PubMedCrossRef
17.
go back to reference Bastos P, Sun X, Wagner D, Wu A, Knaus W. Glasgow coma scale score in the evaluation of outcome in the intensive care unit: findings from the acute physiology and chronic health evaluation III study. Crit Care Med. 1993;21(10):1459–65.PubMedCrossRef Bastos P, Sun X, Wagner D, Wu A, Knaus W. Glasgow coma scale score in the evaluation of outcome in the intensive care unit: findings from the acute physiology and chronic health evaluation III study. Crit Care Med. 1993;21(10):1459–65.PubMedCrossRef
18.
go back to reference Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.PubMedCrossRef Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.PubMedCrossRef
19.
go back to reference Feldman GJ, Mullin JM, Ryan MP. Occludin: structure, function and regulation. Adv Drug Deliv Rev. 2005;57(6):883–917.PubMedCrossRef Feldman GJ, Mullin JM, Ryan MP. Occludin: structure, function and regulation. Adv Drug Deliv Rev. 2005;57(6):883–917.PubMedCrossRef
20.
go back to reference Falk G, Fahey T. C-reactive protein and community-acquired pneumonia in ambulatory care: systematic review of diagnostic accuracy studies. Fam Pract. 2009;26(1):10–21.PubMedCrossRef Falk G, Fahey T. C-reactive protein and community-acquired pneumonia in ambulatory care: systematic review of diagnostic accuracy studies. Fam Pract. 2009;26(1):10–21.PubMedCrossRef
21.
go back to reference Harbarth S, Holeckova K, Froidevaux C, Pittet D, Ricou B, Grau GE, Vadas L, Pugin J. Geneva sepsis network: diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med. 2001;164(3):396–402.PubMedCrossRef Harbarth S, Holeckova K, Froidevaux C, Pittet D, Ricou B, Grau GE, Vadas L, Pugin J. Geneva sepsis network: diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med. 2001;164(3):396–402.PubMedCrossRef
22.
go back to reference Rochfort KD, Collins LE, McLoughlin A, Cummins PM. Shear-dependent attenuation of cellular ROS levels can suppress proinflammatory cytokine injury to human brain microvascular endothelial barrier properties. J Cereb Blood Flow Metab. 2015;35(10):1648–56.PubMedPubMedCentralCrossRef Rochfort KD, Collins LE, McLoughlin A, Cummins PM. Shear-dependent attenuation of cellular ROS levels can suppress proinflammatory cytokine injury to human brain microvascular endothelial barrier properties. J Cereb Blood Flow Metab. 2015;35(10):1648–56.PubMedPubMedCentralCrossRef
24.
go back to reference He H, Geng T, Chen P, Wang M, Hu J, Kang L, Song W, Tang H. NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation. Sci Rep. 2016;6(1):27711.PubMedPubMedCentralCrossRef He H, Geng T, Chen P, Wang M, Hu J, Kang L, Song W, Tang H. NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation. Sci Rep. 2016;6(1):27711.PubMedPubMedCentralCrossRef
25.
go back to reference Beringer A, Thiam N, Molle J, Bartosch B, Miossec P. Synergistic effect of interleukin-17 and tumour necrosis factor-α on inflammatory response in hepatocytes through interleukin-6-dependent and independent pathways. Clin Experimental Immunol. 2018;193(2):221–33.CrossRef Beringer A, Thiam N, Molle J, Bartosch B, Miossec P. Synergistic effect of interleukin-17 and tumour necrosis factor-α on inflammatory response in hepatocytes through interleukin-6-dependent and independent pathways. Clin Experimental Immunol. 2018;193(2):221–33.CrossRef
26.
go back to reference Pan R, Yu K, Weatherwax T, Zheng H, Liu W, Liu KJ. Blood occludin level as a potential biomarker for early blood brain barrier damage following ischemic stroke. Sci Rep. 2017;7(1):40331.PubMedPubMedCentralCrossRef Pan R, Yu K, Weatherwax T, Zheng H, Liu W, Liu KJ. Blood occludin level as a potential biomarker for early blood brain barrier damage following ischemic stroke. Sci Rep. 2017;7(1):40331.PubMedPubMedCentralCrossRef
27.
go back to reference Ni Y, Teng T, Li R, Simonyi A, Sun GY, Lee JC. TNFα alters occludin and cerebral endothelial permeability: role of p38MAPK. PLoS One. 2017;12(2):e0170346.PubMedPubMedCentralCrossRef Ni Y, Teng T, Li R, Simonyi A, Sun GY, Lee JC. TNFα alters occludin and cerebral endothelial permeability: role of p38MAPK. PLoS One. 2017;12(2):e0170346.PubMedPubMedCentralCrossRef
28.
go back to reference Qin L-h, Huang W, Mo X-a, Chen Y-l, Wu X-h. LPS induces occludin dysregulation in cerebral microvascular endothelial cells via MAPK signaling and augmenting MMP-2 levels. Oxidative Med Cell Longev. 2015;2015:120641–9.CrossRef Qin L-h, Huang W, Mo X-a, Chen Y-l, Wu X-h. LPS induces occludin dysregulation in cerebral microvascular endothelial cells via MAPK signaling and augmenting MMP-2 levels. Oxidative Med Cell Longev. 2015;2015:120641–9.CrossRef
29.
go back to reference Zhao Z, Hu J, Gao X, Liang H, Liu Z. Activation of AMPK attenuates lipopolysaccharide-impaired integrity and function of blood–brain barrier in human brain microvascular endothelial cells. Exp Mol Pathol. 2014;97(3):386–92.PubMedCrossRef Zhao Z, Hu J, Gao X, Liang H, Liu Z. Activation of AMPK attenuates lipopolysaccharide-impaired integrity and function of blood–brain barrier in human brain microvascular endothelial cells. Exp Mol Pathol. 2014;97(3):386–92.PubMedCrossRef
30.
go back to reference Shi S, Qi Z, Ma Q, Pan R, Timmins GS, Zhao Y, Shi W, Zhang Y, Ji X, Liu KJ. Normobaric hyperoxia reduces blood occludin fragments in rats and patients with acute ischemic stroke. Stroke. 2017;48(10):2848–54.PubMedPubMedCentralCrossRef Shi S, Qi Z, Ma Q, Pan R, Timmins GS, Zhao Y, Shi W, Zhang Y, Ji X, Liu KJ. Normobaric hyperoxia reduces blood occludin fragments in rats and patients with acute ischemic stroke. Stroke. 2017;48(10):2848–54.PubMedPubMedCentralCrossRef
31.
go back to reference Erikson K, Ala-Kokko TI, Koskenkari J, Liisanantti JH, Kamakura R, Herzig KH, Syrjälä H. Elevated serum S-100β in patients with septic shock is associated with delirium. Acta Anaesthesiol Scand. 2019;63(1):69–73.PubMedCrossRef Erikson K, Ala-Kokko TI, Koskenkari J, Liisanantti JH, Kamakura R, Herzig KH, Syrjälä H. Elevated serum S-100β in patients with septic shock is associated with delirium. Acta Anaesthesiol Scand. 2019;63(1):69–73.PubMedCrossRef
32.
go back to reference Abdullah Z, Rakkar K, Bath PMW, Bayraktutan U. Inhibition of TNF-α protects in vitro brain barrier from ischaemic damage. Mol Cell Neurosci. 2015;69:65–79.PubMedCrossRef Abdullah Z, Rakkar K, Bath PMW, Bayraktutan U. Inhibition of TNF-α protects in vitro brain barrier from ischaemic damage. Mol Cell Neurosci. 2015;69:65–79.PubMedCrossRef
Metadata
Title
Brain tight junction protein expression in sepsis in an autopsy series
Authors
Kristo Erikson
Hannu Tuominen
Merja Vakkala
Janne Henrik Liisanantti
Tuomo Karttunen
Hannu Syrjälä
Tero Ilmari Ala-Kokko
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03101-3

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue