Skip to main content
Top
Published in: Critical Care 1/2020

01-12-2020 | Septicemia | Research

Hypertonic sodium lactate improves microcirculation, cardiac function, and inflammation in a rat model of sepsis

Authors: Emmanuel Besnier, David Coquerel, Geoffrey Kouadri, Thomas Clavier, Raphael Favory, Thibault Duburcq, Olivier Lesur, Soumeya Bekri, Vincent Richard, Paul Mulder, Fabienne Tamion

Published in: Critical Care | Issue 1/2020

Login to get access

Abstract

Background

Hypertonic sodium lactate (HSL) may be of interest during inflammation. We aimed to evaluate its effects during experimental sepsis in rats (cecal ligation and puncture (CLP)).

Methods

Three groups were analyzed (n = 10/group): sham, CLP-NaCl 0.9%, and CLP-HSL (2.5 mL/kg/h of fluids for 18 h after CLP). Mesenteric microcirculation, echocardiography, cytokines, and biochemical parameters were evaluated. Two additional experiments were performed for capillary leakage (Evans blue, n = 5/group) and cardiac hemodynamics (n = 7/group).

Results

HSL improved mesenteric microcirculation (CLP-HSL 736 [407–879] vs. CLP-NaCl 241 [209–391] UI/pixel, p = 0.0006), cardiac output (0.34 [0.28–0.43] vs. 0.14 [0.10–0.18] mL/min/g, p < 0.0001), and left ventricular fractional shortening (55 [46–73] vs. 39 [33–52] %, p = 0.009). HSL also raised dP/dtmax slope (6.3 [3.3–12.1] vs. 2.7 [2.0–3.9] 103 mmHg/s, p = 0.04), lowered left ventricular end-diastolic pressure-volume relation (1.9 [1.1–2.3] vs. 3.0 [2.2–3.7] RVU/mmHg, p = 0.005), and reduced Evans blue diffusion in the gut (37 [31–43] vs. 113 [63–142], p = 0.03), the lung (108 [82–174] vs. 273 [222–445], p = 0.006), and the liver (24 [14–37] vs. 70 [50–89] ng EB/mg, p = 0.04). Lactate and 3-hydroxybutyrate were higher in CLP-HSL (6.03 [3.08–10.30] vs. 3.19 [2.42–5.11] mmol/L, p = 0.04; 400 [174–626] vs. 189 [130–301] μmol/L, p = 0.03). Plasma cytokines were reduced in HSL (IL-1β, 172 [119–446] vs. 928 [245–1470] pg/mL, p = 0.004; TNFα, 17.9 [12.5–50.3] vs. 53.9 [30.8–85.6] pg/mL, p = 0.005; IL-10, 352 [267–912] vs. 905 [723–1243] pg/mL) as well as plasma VEGF-A (198 [185–250] vs. 261 [250–269] pg/mL, p = 0.009).

Conclusions

Hypertonic sodium lactate fluid protects against cardiac dysfunction, mesenteric microcirculation alteration, and capillary leakage during sepsis and simultaneously reduces inflammation and enhances ketone bodies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S. Recognizing sepsis as a global health priority - a WHO resolution. N Engl J Med. 2017;377:414–7.CrossRef Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S. Recognizing sepsis as a global health priority - a WHO resolution. N Engl J Med. 2017;377:414–7.CrossRef
2.
go back to reference Alsous F, Khamiees M, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000;117:1749–54.CrossRef Alsous F, Khamiees M, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000;117:1749–54.CrossRef
3.
go back to reference Sirvent J-M, Ferri C, Baró A, Murcia C, Lorencio C. Fluid balance in sepsis and septic shock as a determining factor of mortality. Am J Emerg Med. 2015;33:186–9.CrossRef Sirvent J-M, Ferri C, Baró A, Murcia C, Lorencio C. Fluid balance in sepsis and septic shock as a determining factor of mortality. Am J Emerg Med. 2015;33:186–9.CrossRef
4.
go back to reference Hippensteel JA, Uchimido R, Tyler PD, et al. Intravenous fluid resuscitation is associated with septic endothelial glycocalyx degradation. Crit Care. 2019;23:259.CrossRef Hippensteel JA, Uchimido R, Tyler PD, et al. Intravenous fluid resuscitation is associated with septic endothelial glycocalyx degradation. Crit Care. 2019;23:259.CrossRef
5.
go back to reference MacDonald N, Pearse RM. Are we close to the ideal intravenous fluid? Br J Anaesth. 2017;119:i63–71.CrossRef MacDonald N, Pearse RM. Are we close to the ideal intravenous fluid? Br J Anaesth. 2017;119:i63–71.CrossRef
6.
go back to reference Weinberg L, Harris L, Bellomo R, et al. Effects of intraoperative and early postoperative normal saline or Plasma-Lyte 148® on hyperkalaemia in deceased donor renal transplantation: a double-blind randomized trial. Br J Anaesth. 2017;119:606–15.CrossRef Weinberg L, Harris L, Bellomo R, et al. Effects of intraoperative and early postoperative normal saline or Plasma-Lyte 148® on hyperkalaemia in deceased donor renal transplantation: a double-blind randomized trial. Br J Anaesth. 2017;119:606–15.CrossRef
7.
go back to reference Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256:18–24.CrossRef Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256:18–24.CrossRef
8.
go back to reference Kellum JA, Song M, Almasri E. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest. 2006;130:962–7.CrossRef Kellum JA, Song M, Almasri E. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest. 2006;130:962–7.CrossRef
9.
go back to reference Chang R, Holcomb JB. Choice of fluid therapy in the initial management of sepsis, severe sepsis, and septic shock. Shock. 2016;46:17–26.CrossRef Chang R, Holcomb JB. Choice of fluid therapy in the initial management of sepsis, severe sepsis, and septic shock. Shock. 2016;46:17–26.CrossRef
10.
go back to reference Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care. 2014;18:503.CrossRef Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care. 2014;18:503.CrossRef
11.
go back to reference Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014;5:66–72.CrossRef Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014;5:66–72.CrossRef
12.
go back to reference Lee I, Hüttemann M. Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta. 1842;2014:1579–86. Lee I, Hüttemann M. Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta. 1842;2014:1579–86.
13.
go back to reference Langley RJ, Tsalik EL, van Velkinburgh JC, et al. An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci Transl Med. 2013;5:195ra95.CrossRef Langley RJ, Tsalik EL, van Velkinburgh JC, et al. An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci Transl Med. 2013;5:195ra95.CrossRef
14.
go back to reference Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care. 2006;12:315–21.CrossRef Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care. 2006;12:315–21.CrossRef
15.
go back to reference Leverve XM, Mustafa I. Lactate: a key metabolite in the intercellular metabolic interplay. Crit Care. 2002;6:284–5.CrossRef Leverve XM, Mustafa I. Lactate: a key metabolite in the intercellular metabolic interplay. Crit Care. 2002;6:284–5.CrossRef
17.
go back to reference Ichai C, Payen J-F, Orban J-C, et al. Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. Intensive Care Med. 2013;39:1413–22.CrossRef Ichai C, Payen J-F, Orban J-C, et al. Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. Intensive Care Med. 2013;39:1413–22.CrossRef
18.
go back to reference Millet A, Cuisinier A, Bouzat P, et al. Hypertonic sodium lactate reverses brain oxygenation and metabolism dysfunction after traumatic brain injury. Br J Anaesth. 2018;120:1295–303.CrossRef Millet A, Cuisinier A, Bouzat P, et al. Hypertonic sodium lactate reverses brain oxygenation and metabolism dysfunction after traumatic brain injury. Br J Anaesth. 2018;120:1295–303.CrossRef
19.
go back to reference Carteron L, Solari D, Patet C, et al. Hypertonic lactate to improve cerebral perfusion and glucose availability after acute brain injury. Crit Care Med. 2018;46:1649–55.CrossRef Carteron L, Solari D, Patet C, et al. Hypertonic lactate to improve cerebral perfusion and glucose availability after acute brain injury. Crit Care Med. 2018;46:1649–55.CrossRef
20.
go back to reference Duburcq T, Durand A, Dessein A-F, et al. Comparison of fluid balance and hemodynamic and metabolic effects of sodium lactate versus sodium bicarbonate versus 0.9% NaCl in porcine endotoxic shock: a randomized, open-label, controlled study. Crit Care. 2017;21:113.CrossRef Duburcq T, Durand A, Dessein A-F, et al. Comparison of fluid balance and hemodynamic and metabolic effects of sodium lactate versus sodium bicarbonate versus 0.9% NaCl in porcine endotoxic shock: a randomized, open-label, controlled study. Crit Care. 2017;21:113.CrossRef
21.
go back to reference Duburcq T, Favory R, Mathieu D, et al. Hypertonic sodium lactate improves fluid balance and hemodynamics in porcine endotoxic shock. Crit Care. 2014;18:467.CrossRef Duburcq T, Favory R, Mathieu D, et al. Hypertonic sodium lactate improves fluid balance and hemodynamics in porcine endotoxic shock. Crit Care. 2014;18:467.CrossRef
22.
go back to reference Coquerel D, Chagnon F, Sainsily X, et al. ELABELA improves cardio-renal outcome in fatal experimental septic shock. Crit Care Med. 2017;45:e1139–48.CrossRef Coquerel D, Chagnon F, Sainsily X, et al. ELABELA improves cardio-renal outcome in fatal experimental septic shock. Crit Care Med. 2017;45:e1139–48.CrossRef
23.
go back to reference Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.CrossRef Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.CrossRef
25.
go back to reference Russell JA, Rush B, Boyd J. Pathophysiology of septic shock. Crit Care Clin. 2018;34:43–61.CrossRef Russell JA, Rush B, Boyd J. Pathophysiology of septic shock. Crit Care Clin. 2018;34:43–61.CrossRef
26.
go back to reference Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8:1223–34.CrossRef Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8:1223–34.CrossRef
27.
go back to reference Shapiro NI, Yano K, Okada H, et al. A prospective, observational study of soluble FLT-1 and vascular endothelial growth factor in sepsis. Shock. 2008;29:452–7.CrossRef Shapiro NI, Yano K, Okada H, et al. A prospective, observational study of soluble FLT-1 and vascular endothelial growth factor in sepsis. Shock. 2008;29:452–7.CrossRef
28.
go back to reference Murphy LS, Wickersham N, McNeil JB, et al. Endothelial glycocalyx degradation is more severe in patients with non-pulmonary sepsis compared to pulmonary sepsis and associates with risk of ARDS and other organ dysfunction. Ann Intensive Care. 2017;7:102.CrossRef Murphy LS, Wickersham N, McNeil JB, et al. Endothelial glycocalyx degradation is more severe in patients with non-pulmonary sepsis compared to pulmonary sepsis and associates with risk of ARDS and other organ dysfunction. Ann Intensive Care. 2017;7:102.CrossRef
29.
go back to reference Inkinen N, Pettilä V, Lakkisto P, et al. Association of endothelial and glycocalyx injury biomarkers with fluid administration, development of acute kidney injury, and 90-day mortality: data from the FINNAKI observational study. Ann Intensive Care. 2019;9:103.CrossRef Inkinen N, Pettilä V, Lakkisto P, et al. Association of endothelial and glycocalyx injury biomarkers with fluid administration, development of acute kidney injury, and 90-day mortality: data from the FINNAKI observational study. Ann Intensive Care. 2019;9:103.CrossRef
30.
go back to reference Offermanns S. Hydroxy-carboxylic acid receptor actions in metabolism. Trends Endocrinol Metab. 2017;28:227–36.CrossRef Offermanns S. Hydroxy-carboxylic acid receptor actions in metabolism. Trends Endocrinol Metab. 2017;28:227–36.CrossRef
31.
go back to reference Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 2014;146:1763–74.CrossRef Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 2014;146:1763–74.CrossRef
32.
go back to reference Errea A, Cayet D, Marchetti P, et al. Lactate inhibits the pro-inflammatory response and metabolic reprogramming in murine macrophages in a GPR81-independent manner. PLoS One. 2016;11:e0163694.CrossRef Errea A, Cayet D, Marchetti P, et al. Lactate inhibits the pro-inflammatory response and metabolic reprogramming in murine macrophages in a GPR81-independent manner. PLoS One. 2016;11:e0163694.CrossRef
33.
go back to reference Leverve XM, Boon C, Hakim T, Anwar M, Siregar E, Mustafa I. Half-molar sodium-lactate solution has a beneficial effect in patients after coronary artery bypass grafting. Intensive Care Med. 2008;34:1796–803.CrossRef Leverve XM, Boon C, Hakim T, Anwar M, Siregar E, Mustafa I. Half-molar sodium-lactate solution has a beneficial effect in patients after coronary artery bypass grafting. Intensive Care Med. 2008;34:1796–803.CrossRef
34.
go back to reference Tamion F, Bauer F, Richard V, et al. Myocardial dysfunction in early state of endotoxemia role of heme-oxygenase-1. J Surg Res. 2010;158:94–103.CrossRef Tamion F, Bauer F, Richard V, et al. Myocardial dysfunction in early state of endotoxemia role of heme-oxygenase-1. J Surg Res. 2010;158:94–103.CrossRef
35.
go back to reference Kline J, Thornton L, Lopaschuk G, Barbee R, Watts J. Lactate improves cardiac efficiency after hemorrhagic shock. Shock. 2000;14: 215–221. Kline J, Thornton L, Lopaschuk G, Barbee R, Watts J. Lactate improves cardiac efficiency after hemorrhagic shock. Shock. 2000;14: 215–221.
36.
go back to reference Levy B, Mansart A, Montemont C, et al. Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock. Intensive Care Med. 2007;33:495–502.CrossRef Levy B, Mansart A, Montemont C, et al. Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock. Intensive Care Med. 2007;33:495–502.CrossRef
37.
go back to reference Duburcq T, Durand A, Tournoys A, et al. Sodium lactate improves renal microvascular thrombosis compared to sodium bicarbonate and 0.9% NaCl in a porcine model of endotoxic shock: an experimental randomized open label controlled study. Ann Intensive Care. 2018;8:24.CrossRef Duburcq T, Durand A, Tournoys A, et al. Sodium lactate improves renal microvascular thrombosis compared to sodium bicarbonate and 0.9% NaCl in a porcine model of endotoxic shock: an experimental randomized open label controlled study. Ann Intensive Care. 2018;8:24.CrossRef
38.
go back to reference Dhar A, Castillo L. Insulin resistance in critical illness. Curr Opin Pediatr. 2011;23:269–74.CrossRef Dhar A, Castillo L. Insulin resistance in critical illness. Curr Opin Pediatr. 2011;23:269–74.CrossRef
39.
go back to reference Nielsen R, Møller N, Gormsen LC, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139:2129–41.CrossRef Nielsen R, Møller N, Gormsen LC, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139:2129–41.CrossRef
40.
go back to reference Su F, Xie K, He X, et al. The harmful effects of hypertonic sodium lactate administration in hyperdynamic septic shock. Shock. 2016;46:663–71.CrossRef Su F, Xie K, He X, et al. The harmful effects of hypertonic sodium lactate administration in hyperdynamic septic shock. Shock. 2016;46:663–71.CrossRef
41.
go back to reference Sen A, Keener CM, Sileanu FE, et al. Chloride content of fluids used for large-volume resuscitation is associated with reduced survival. Crit Care Med. 2017;45:e146–53.CrossRef Sen A, Keener CM, Sileanu FE, et al. Chloride content of fluids used for large-volume resuscitation is associated with reduced survival. Crit Care Med. 2017;45:e146–53.CrossRef
42.
go back to reference O’Malley CMN, Frumento RJ, Hardy MA, et al. A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth Analg. 2005;100:1518–24 table of contents.CrossRef O’Malley CMN, Frumento RJ, Hardy MA, et al. A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth Analg. 2005;100:1518–24 table of contents.CrossRef
43.
go back to reference Orbegozo D, Vincent J-L, Creteur J, Su F. Hypertonic saline in human sepsis: a systematic review of randomized controlled trials. Anesth Analg. 2019;128:1175–84.CrossRef Orbegozo D, Vincent J-L, Creteur J, Su F. Hypertonic saline in human sepsis: a systematic review of randomized controlled trials. Anesth Analg. 2019;128:1175–84.CrossRef
Metadata
Title
Hypertonic sodium lactate improves microcirculation, cardiac function, and inflammation in a rat model of sepsis
Authors
Emmanuel Besnier
David Coquerel
Geoffrey Kouadri
Thomas Clavier
Raphael Favory
Thibault Duburcq
Olivier Lesur
Soumeya Bekri
Vincent Richard
Paul Mulder
Fabienne Tamion
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-020-03083-2

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue