Skip to main content
Top
Published in: Critical Care 1/2020

Open Access 01-12-2020 | Cardiopulmonary Resuscitation | Editorial

ECPR for out-of-hospital cardiac arrest: more evidence is needed

Authors: Graeme MacLaren, Amirali Masoumi, Daniel Brodie

Published in: Critical Care | Issue 1/2020

Login to get access

Excerpt

The use of extracorporeal membrane oxygenation during cardiac arrest (extracorporeal cardiopulmonary resuscitation (ECPR)) has increased in recent years [1] after evidence emerged that it was associated with better outcomes than conventional CPR for in-hospital cardiac arrest [24]. This success led some clinicians to attempt ECPR in highly selected patients who suffered out-of-hospital cardiac arrest (OHCA), often cannulating them on arrival in the emergency department [5]. One key determinant of the likelihood of survival in ECPR patients is the duration of CPR prior to cannulation [2, 3, 6, 7], so investigators inferred that the outcomes for OHCA patients might be improved by cannulation in the field (prehospital ECPR), thereby reducing the period of inadequate circulation. However, the logistic barriers to prehospital ECPR are formidable, including the difficulties inherent to undertaking complex medical procedures in a field setting, minimizing delays in cannulation without being indiscriminate about patient selection, as well as the resource consumption. Nonetheless, some hospital networks have created mobile intensive care units with prehospital ECPR capabilities [5]. …
Literature
1.
go back to reference Extracorporeal Life Support Organization. ECLS registry report. Ann Arbor: International Summary; 2019. Extracorporeal Life Support Organization. ECLS registry report. Ann Arbor: International Summary; 2019.
2.
go back to reference Chen YS, Lin JW, Yu HY, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;372:554–61.CrossRef Chen YS, Lin JW, Yu HY, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;372:554–61.CrossRef
3.
go back to reference Shin TG, Jo IJ, Sim MS, et al. Two-year survival and neurological outcome of in-hospital cardiac arrest patients rescued by extracorporeal cardiopulmonary resuscitation. Int J Cardiol. 2013;168:3424–30.CrossRef Shin TG, Jo IJ, Sim MS, et al. Two-year survival and neurological outcome of in-hospital cardiac arrest patients rescued by extracorporeal cardiopulmonary resuscitation. Int J Cardiol. 2013;168:3424–30.CrossRef
4.
go back to reference Ouweneel DM, Schotborgh JV, Limpens J, et al. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1922–34.CrossRef Ouweneel DM, Schotborgh JV, Limpens J, et al. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1922–34.CrossRef
5.
go back to reference Lamhaut L, Hutin A, Puymirat E, et al. A pre-hospital extracorporeal cardiopulmonary resuscitation (ECPR) strategy for treatment of refractory out hospital cardiac arrest: an observational study and propensity analysis. Resuscitation. 2017;117:109–17.CrossRef Lamhaut L, Hutin A, Puymirat E, et al. A pre-hospital extracorporeal cardiopulmonary resuscitation (ECPR) strategy for treatment of refractory out hospital cardiac arrest: an observational study and propensity analysis. Resuscitation. 2017;117:109–17.CrossRef
6.
go back to reference Wengenmayer T, Rombach S, Ramshom F, et al. Influence of low-flow time on survival after extracorporeal cardiopulmonary resuscitation (eCPR). Crit Care. 2017;21:157.CrossRef Wengenmayer T, Rombach S, Ramshom F, et al. Influence of low-flow time on survival after extracorporeal cardiopulmonary resuscitation (eCPR). Crit Care. 2017;21:157.CrossRef
7.
go back to reference Abrams D, Garan AR, Abdelbary A, et al. Position paper for the organization of ECMO programs for cardiac failure in adults. Intensive Care Med. 2018;44:717–29.CrossRef Abrams D, Garan AR, Abdelbary A, et al. Position paper for the organization of ECMO programs for cardiac failure in adults. Intensive Care Med. 2018;44:717–29.CrossRef
8.
go back to reference Bougouin W, Dumas F, Lamhaut L, et al. Extracorporeal cardiopulmonary resuscitation in out-of-hospital cardiac arrest: a registry study. Eur Heart J. 2019; [Epub ahead of print]. Bougouin W, Dumas F, Lamhaut L, et al. Extracorporeal cardiopulmonary resuscitation in out-of-hospital cardiac arrest: a registry study. Eur Heart J. 2019; [Epub ahead of print].
9.
go back to reference Haywood K, Whitehead L, Nadkarni VM, et al. COSCA (core outcome set for cardiac arrest) in adults: an advisory statement from the International Liaison Committee on Resuscitation. Resuscitation 2018; 127:147–163.CrossRef Haywood K, Whitehead L, Nadkarni VM, et al. COSCA (core outcome set for cardiac arrest) in adults: an advisory statement from the International Liaison Committee on Resuscitation. Resuscitation 2018; 127:147–163.CrossRef
10.
go back to reference Geocadin RG, Callaway CW, Fink EL, et al. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: a scientific statement from the American Heart Association. Circulation. 2019;140:e517–42.CrossRef Geocadin RG, Callaway CW, Fink EL, et al. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: a scientific statement from the American Heart Association. Circulation. 2019;140:e517–42.CrossRef
11.
go back to reference Stub D, Bernard S, Pellegrino V, et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation. 2015;86:88–94.CrossRef Stub D, Bernard S, Pellegrino V, et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation. 2015;86:88–94.CrossRef
12.
go back to reference MacLaren G. When to initiate ECMO with low likelihood of success. Crit Care. 2018;22:217.CrossRef MacLaren G. When to initiate ECMO with low likelihood of success. Crit Care. 2018;22:217.CrossRef
13.
go back to reference Machado FR. All in a day’s work – equity vs. equality at a public ICU in Brazil. N Engl J Med. 2016;375:2420–1.CrossRef Machado FR. All in a day’s work – equity vs. equality at a public ICU in Brazil. N Engl J Med. 2016;375:2420–1.CrossRef
14.
go back to reference Kagawa E, Dote K, Kato M, et al. Should we emergently revascularize occluded coronaries for cardiac arrest? Rapid-response extracorporeal membrane oxygenation and intra-arrest percutaneous coronary intervention. Circulation. 2012;126:1605–13.CrossRef Kagawa E, Dote K, Kato M, et al. Should we emergently revascularize occluded coronaries for cardiac arrest? Rapid-response extracorporeal membrane oxygenation and intra-arrest percutaneous coronary intervention. Circulation. 2012;126:1605–13.CrossRef
Metadata
Title
ECPR for out-of-hospital cardiac arrest: more evidence is needed
Authors
Graeme MacLaren
Amirali Masoumi
Daniel Brodie
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2020
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2722-0

Other articles of this Issue 1/2020

Critical Care 1/2020 Go to the issue