Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Acute Respiratory Distress-Syndrome | Editorial

How I optimize power to avoid VILI

Author: John J. Marini

Published in: Critical Care | Issue 1/2019

Login to get access

Excerpt

Mechanical ventilation is an inherently dynamic process. Nonetheless, tidal volume and static tidal airway pressures (plateau, PEEP, and their difference, the driving pressure) have long served as the primary variables guiding prevention of ventilator-induced lung injury (VILI). Despite their prominence in current practice, such non-dynamic pressures cannot act alone to inflict damage; a pressure must be paired with a volume change, thereby expending energy. More specifically, any instigator of damage couples pressure applied directly to the lung, i.e., transpulmonary pressure (stress), to the associated change of lung volume (strain). Because damage depends not only on the frequency of such pairings but also on the rate of tidal stress/strain development across the epithelium and within individual extracellular fibrils that oppose lung expansion, rapid flows accentuate VILI hazard [1, 2]. …
Literature
1.
go back to reference Protti A, Maraffi T, Milesi M, Votta E, Santini A, Pugni P, Andreis DT, Nicosia F, Zannin E, Gatti S, Vaira V, Ferrero S, Gattinoni L. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med. 2016;44(9):e838–45. https://doi.org/10.1097/CCM. 0000000.CrossRefPubMed Protti A, Maraffi T, Milesi M, Votta E, Santini A, Pugni P, Andreis DT, Nicosia F, Zannin E, Gatti S, Vaira V, Ferrero S, Gattinoni L. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med. 2016;44(9):e838–45. https://​doi.​org/​10.​1097/​CCM. 0000000.CrossRefPubMed
2.
go back to reference Garcia CS, Abreu SC, Soares RM, Prota LF, Figueira RC, Morales MM, Capelozzi VL, Zin WA, Rocco PR. Pulmonary morphofunctional effects of mechanical ventilation with high inspiratory air flow. Crit Care Med, 232. 2008;36(1):–9. Garcia CS, Abreu SC, Soares RM, Prota LF, Figueira RC, Morales MM, Capelozzi VL, Zin WA, Rocco PR. Pulmonary morphofunctional effects of mechanical ventilation with high inspiratory air flow. Crit Care Med, 232. 2008;36(1):–9.
3.
go back to reference Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, Cammaroto A, Brioni M, Montaruli C, Nikolla K, Guanziroli M, Dondossola D, Gatti S, Valerio V, Vergani GL, Pugni P, Cadringher P, Gagliano N, Gattinoni L. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124:1100–8.CrossRef Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, Cammaroto A, Brioni M, Montaruli C, Nikolla K, Guanziroli M, Dondossola D, Gatti S, Valerio V, Vergani GL, Pugni P, Cadringher P, Gagliano N, Gattinoni L. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124:1100–8.CrossRef
4.
go back to reference Marini JJ, Hotchkiss JR, Broccard AF. Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care. 2003;7(6):435–44.CrossRef Marini JJ, Hotchkiss JR, Broccard AF. Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care. 2003;7(6):435–44.CrossRef
5.
go back to reference Marini JJ, Jaber S. Dynamic predictors of VILI risk: beyond the driving pressure. Intensive Care Med. 2016;42:1597–600.CrossRef Marini JJ, Jaber S. Dynamic predictors of VILI risk: beyond the driving pressure. Intensive Care Med. 2016;42:1597–600.CrossRef
7.
go back to reference Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L. The “baby lung” became an adult. Intensive Care Med. 2016;42(5):663–73.CrossRef Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L. The “baby lung” became an adult. Intensive Care Med. 2016;42(5):663–73.CrossRef
8.
go back to reference Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28:596–608.CrossRef Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28:596–608.CrossRef
9.
go back to reference Cressoni M, Chiurazzi C, Gotti M, et al. Lung inhomogeneities and time course of ventilator-induced mechanical injuries. Anesthesiology. 2015;123:618–27.CrossRef Cressoni M, Chiurazzi C, Gotti M, et al. Lung inhomogeneities and time course of ventilator-induced mechanical injuries. Anesthesiology. 2015;123:618–27.CrossRef
10.
go back to reference Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, Chierichetti M, Coppola S, Conte G, Gatti S, Leopardi O, Masson S, Lombardi L, Lazzerini M, Rampoldi E, Cadringher P, Gattinoni L. Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med. 2011;183:1354–62.CrossRef Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, Chierichetti M, Coppola S, Conte G, Gatti S, Leopardi O, Masson S, Lombardi L, Lazzerini M, Rampoldi E, Cadringher P, Gattinoni L. Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med. 2011;183:1354–62.CrossRef
14.
go back to reference Maeda Y, Fujino Y, Uchiyama A, et al. Effects of peak inspiratory flow on development of ventilator-induced lung injury in rabbits. Anesthesiology. 2004;101(3):722–8.CrossRef Maeda Y, Fujino Y, Uchiyama A, et al. Effects of peak inspiratory flow on development of ventilator-induced lung injury in rabbits. Anesthesiology. 2004;101(3):722–8.CrossRef
Metadata
Title
How I optimize power to avoid VILI
Author
John J. Marini
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2638-8

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue