Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Care | Research

Describing organ dysfunction in the intensive care unit: a cohort study of 20,000 patients

Authors: Andrea Soo, Danny J. Zuege, Gordon H. Fick, Daniel J. Niven, Luc R. Berthiaume, Henry T. Stelfox, Christopher J. Doig

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

Multiple organ dysfunction is a common cause of morbidity and mortality in intensive care units (ICUs). Original development of the Sequential Organ Failure Assessment (SOFA) score was not to predict outcome, but to describe temporal changes in organ dysfunction in critically ill patients. Organ dysfunction scoring may be a reasonable surrogate outcome in clinical trials but further exploration of the impact of case mix on the temporal sequence of organ dysfunction is required. Our aim was to compare temporal changes in SOFA scores between hospital survivors and non-survivors.

Methods

We performed a population-based observational retrospective cohort study of critically ill patients admitted from January 1, 2004, to December 31, 2013, to 4 multisystem adult intensive care units (ICUs) in Calgary, Canada. The primary outcome was temporal changes in daily SOFA scores during the first 14 days of ICU admission. SOFA scores were modeled between hospital survivors and non-survivors using generalized estimating equations (GEE) and were also stratified by admission SOFA (≤ 11 versus > 11).

Results

The cohort consisted of 20,007 patients with at least one SOFA score and was mostly male (58.2%) with a median age of 59 (interquartile range [IQR] 44–72). Median ICU length of stay was 3.5 (IQR 1.7–7.5) days. ICU and hospital mortality were 18.5% and 25.5%, respectively. Temporal change in SOFA scores varied by survival and admission SOFA score in a complicated relationship. Area under the receiver operating characteristic (ROC) curve using admission SOFA as a predictor of hospital mortality was 0.77. The hospital mortality rate was 5.6% for patients with an admission SOFA of 0–2 and 94.4% with an admission SOFA of 20–24. There was an approximately linear increase in hospital mortality for SOFA scores of 3–19 (range 8.7–84.7%).

Conclusions

Examining the clinical course of organ dysfunction in a large non-selective cohort of patients provides insight into the utility of SOFA. We have demonstrated that hospital outcome is associated with both admission SOFA and the temporal rate of change in SOFA after admission. It is necessary to further explore the impact of additional clinical factors on the clinical course of SOFA with large datasets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brealey D, Singer M. Multi-organ dysfunction in the critically ill: epidemiology, pathophysiology and management. J R Coll Physicians Lond. 2000;34(5):424–7.PubMed Brealey D, Singer M. Multi-organ dysfunction in the critically ill: epidemiology, pathophysiology and management. J R Coll Physicians Lond. 2000;34(5):424–7.PubMed
2.
go back to reference Baue AE. Multiple, progressive, or sequential systems failure: a syndrome of the 1970s. Arch Surg. 1975;110:779–81.CrossRef Baue AE. Multiple, progressive, or sequential systems failure: a syndrome of the 1970s. Arch Surg. 1975;110:779–81.CrossRef
3.
go back to reference Baue AE. Multiple organ failure, multiple organ dysfunction syndrome, and systemic inflammatory response syndrome: why no magic bullets? Arch Surg. 1997;132:703–7.CrossRef Baue AE. Multiple organ failure, multiple organ dysfunction syndrome, and systemic inflammatory response syndrome: why no magic bullets? Arch Surg. 1997;132:703–7.CrossRef
4.
go back to reference Heard S, Fink M. Multiple organ failure syndrome. Part 1: epidemiology, prognosis, and pathophysiology. J Int Care Med. 1991;6:279–94.CrossRef Heard S, Fink M. Multiple organ failure syndrome. Part 1: epidemiology, prognosis, and pathophysiology. J Int Care Med. 1991;6:279–94.CrossRef
5.
go back to reference Deitch EA. Multiple organ failure: pathophysiology and potential future therapy. Ann Surg. 1992;216:117–34.CrossRef Deitch EA. Multiple organ failure: pathophysiology and potential future therapy. Ann Surg. 1992;216:117–34.CrossRef
6.
go back to reference Seely AJE, Christou NV. Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Crit Care Med. 2000;28:2193–000.CrossRef Seely AJE, Christou NV. Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Crit Care Med. 2000;28:2193–000.CrossRef
7.
go back to reference Marshal JC. Critical illness is an iatrogenic disorder. Crit Care Med. 2010;38 (suppl:S582–9.CrossRef Marshal JC. Critical illness is an iatrogenic disorder. Crit Care Med. 2010;38 (suppl:S582–9.CrossRef
8.
go back to reference Matsuda N, Hattori Y. Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy. J Pharmacol Sci. 2006;101:189–98.CrossRef Matsuda N, Hattori Y. Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy. J Pharmacol Sci. 2006;101:189–98.CrossRef
9.
go back to reference Baue AE. MOF, MODS, and SIRS: what is in a name or an acronym? Shock. 2006;26:438–49.CrossRef Baue AE. MOF, MODS, and SIRS: what is in a name or an acronym? Shock. 2006;26:438–49.CrossRef
10.
go back to reference Vincent J-L, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–10.CrossRef Vincent J-L, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–10.CrossRef
11.
go back to reference Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. 1995;23:1638–52.CrossRef Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. 1995;23:1638–52.CrossRef
12.
go back to reference Le Gall JR, Lkar J, Lemeshow S, Saulnier F, Alberti C, Artigas A, et al. The logistic organ dysfunction system: a new way to assess organ dysfunction in the intensive care unit. ICU scoring group. JAMA. 1996;276:802–10.CrossRef Le Gall JR, Lkar J, Lemeshow S, Saulnier F, Alberti C, Artigas A, et al. The logistic organ dysfunction system: a new way to assess organ dysfunction in the intensive care unit. ICU scoring group. JAMA. 1996;276:802–10.CrossRef
13.
go back to reference Zygun DA, Doig CJ. Measuring organ dysfunction. In: Vincent J-L, editor. Yearbook of intensive care and emergency medicine. Berlin: Springer-Verlag; 2002. Zygun DA, Doig CJ. Measuring organ dysfunction. In: Vincent J-L, editor. Yearbook of intensive care and emergency medicine. Berlin: Springer-Verlag; 2002.
14.
go back to reference Lee KS, Sheen SS, Jung YJ, Park RW, Lee YJ, Chung WY, et al. Consideration of additional factors in sequential organ failure assessment score. J Crit Care. 2014;29(1):185.e9–185.e12.CrossRef Lee KS, Sheen SS, Jung YJ, Park RW, Lee YJ, Chung WY, et al. Consideration of additional factors in sequential organ failure assessment score. J Crit Care. 2014;29(1):185.e9–185.e12.CrossRef
15.
go back to reference de Grooth HJ, Geenen IL, Girbes AR, Vincent JL, Parienti JJ, Oudemans-van Straaten HM. SOFA and mortality endpoints in randomized controlled trials: a systematic review and meta-regression analysis. Crit Care. 2017;21:38.CrossRef de Grooth HJ, Geenen IL, Girbes AR, Vincent JL, Parienti JJ, Oudemans-van Straaten HM. SOFA and mortality endpoints in randomized controlled trials: a systematic review and meta-regression analysis. Crit Care. 2017;21:38.CrossRef
16.
go back to reference Marshall J. Organ dysfunction as an outcome measure in clinical trials. Eur J Surg Suppl. 1999;584:62–7.CrossRef Marshall J. Organ dysfunction as an outcome measure in clinical trials. Eur J Surg Suppl. 1999;584:62–7.CrossRef
17.
go back to reference Minne L, Abu-Hanna A, de Jonge E. Evaluation of SOFA-based models for predicting mortality in the ICU: a systematic review. Crit Care. 2008;12(6):R161.CrossRef Minne L, Abu-Hanna A, de Jonge E. Evaluation of SOFA-based models for predicting mortality in the ICU: a systematic review. Crit Care. 2008;12(6):R161.CrossRef
18.
go back to reference Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA. 2001;286(14):1754–8.CrossRef Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA. 2001;286(14):1754–8.CrossRef
19.
go back to reference Moreno R, Vincent JL, Matos R, Mendonça A, Cantraine F, Thijs L, et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicenter study. Int Care Med. 1999;25:686–96.CrossRef Moreno R, Vincent JL, Matos R, Mendonça A, Cantraine F, Thijs L, et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicenter study. Int Care Med. 1999;25:686–96.CrossRef
20.
go back to reference Bingold TM, Lefering R, Zacharowski K, Meybohm P, Waydhas C, Rosenberger P, et al. Individual organ failure and concomitant risk of mortality differs according to the type of ICU admission to ICU, a retrospective study of SOFA score of 23,795 patients. PLoS One. 2015;10(8):e0134329.CrossRef Bingold TM, Lefering R, Zacharowski K, Meybohm P, Waydhas C, Rosenberger P, et al. Individual organ failure and concomitant risk of mortality differs according to the type of ICU admission to ICU, a retrospective study of SOFA score of 23,795 patients. PLoS One. 2015;10(8):e0134329.CrossRef
21.
go back to reference Zygun DA, Laupland KB, Fick GH, Sandham JD, Doig CJ. Limited ability of SOFA and MOD scores to discriminate outcome: a prospective evaluation in 1,436 patients. Can J Anaesth. 2005;52(3):302–8.CrossRef Zygun DA, Laupland KB, Fick GH, Sandham JD, Doig CJ. Limited ability of SOFA and MOD scores to discriminate outcome: a prospective evaluation in 1,436 patients. Can J Anaesth. 2005;52(3):302–8.CrossRef
22.
go back to reference Christian MD, Hawryluck L, Wax RS, Cook T, Lazar NM, Herridge MS, et al. Development of a triage protocol for critical care during an influenza pandemic. CMAJ. 2006;175:1377–81.CrossRef Christian MD, Hawryluck L, Wax RS, Cook T, Lazar NM, Herridge MS, et al. Development of a triage protocol for critical care during an influenza pandemic. CMAJ. 2006;175:1377–81.CrossRef
23.
go back to reference Khan Z, Hulme J, Sherwood N. An assessment of the validity of SOFA score based triage in H1N1 critically ill patients during an influenza pandemic. Anaesthesia. 2009;64:1283–8.CrossRef Khan Z, Hulme J, Sherwood N. An assessment of the validity of SOFA score based triage in H1N1 critically ill patients during an influenza pandemic. Anaesthesia. 2009;64:1283–8.CrossRef
24.
go back to reference Sprung CL, Zimmerman JL, Christian MD, Joynt GM, Hick JL, Taylor B, et al. Recommendations for intensive care unit and hospital preparations for an influenza epidemic or mass disaster. Summary report of the European Society of Intensive Care Medicine’s Task Force for intensive care unit triage during an influenza epidemic or mass disaster. Int Care Med. 2010;36:428–43.CrossRef Sprung CL, Zimmerman JL, Christian MD, Joynt GM, Hick JL, Taylor B, et al. Recommendations for intensive care unit and hospital preparations for an influenza epidemic or mass disaster. Summary report of the European Society of Intensive Care Medicine’s Task Force for intensive care unit triage during an influenza epidemic or mass disaster. Int Care Med. 2010;36:428–43.CrossRef
25.
go back to reference Shahpori R, Stelfox HT, Doig CJ, Boiteau PJ, Zygun DA. Sequential organ failure assessment in H1N1 pandemic planning. Crit Care Med. 2011;39(4):827–32.CrossRef Shahpori R, Stelfox HT, Doig CJ, Boiteau PJ, Zygun DA. Sequential organ failure assessment in H1N1 pandemic planning. Crit Care Med. 2011;39(4):827–32.CrossRef
26.
go back to reference Kanter RK. Would triage predictors perform better than first-come, first-served in pandemic ventilator allocation? Chest. 2015;147(1):102–8.CrossRef Kanter RK. Would triage predictors perform better than first-come, first-served in pandemic ventilator allocation? Chest. 2015;147(1):102–8.CrossRef
27.
go back to reference Hutchings L, Watkinson P, Young JD, Willett K. Defining multiple organ failure after major trauma: a comparison of the Denver, Sequential Organ Failure Assessment, and Marshal scoring systems. J Trauma and Acute Care Surg. 2017;82(3):534–41.CrossRef Hutchings L, Watkinson P, Young JD, Willett K. Defining multiple organ failure after major trauma: a comparison of the Denver, Sequential Organ Failure Assessment, and Marshal scoring systems. J Trauma and Acute Care Surg. 2017;82(3):534–41.CrossRef
28.
go back to reference Zygun D, Berthiaume L, Laupland K, Kortbeek J, Doig C. SOFA is superior to MOD score for the determination of non-neurologic organ dysfunction in patients with severe traumatic brain injury: a cohort study. Crit Care. 2006;10(4):R115.CrossRef Zygun D, Berthiaume L, Laupland K, Kortbeek J, Doig C. SOFA is superior to MOD score for the determination of non-neurologic organ dysfunction in patients with severe traumatic brain injury: a cohort study. Crit Care. 2006;10(4):R115.CrossRef
29.
go back to reference Zygun DA, Kortbeek JB, Fick GH, Laupland KB, Doig CJ. Non-neurologic organ dysfunction in severe traumatic brain injury. Crit Care Med. 2005;33(3):654–60. Zygun DA, Kortbeek JB, Fick GH, Laupland KB, Doig CJ. Non-neurologic organ dysfunction in severe traumatic brain injury. Crit Care Med. 2005;33(3):654–60.
30.
go back to reference Zygun DA, Doig CJ, Gupta AK, Whiting G, Nicholas C, Shepherd E, et al. Non-neurological organ dysfunction in neurocritical care. J Crit Care. 2003;18(4):238–44.CrossRef Zygun DA, Doig CJ, Gupta AK, Whiting G, Nicholas C, Shepherd E, et al. Non-neurological organ dysfunction in neurocritical care. J Crit Care. 2003;18(4):238–44.CrossRef
31.
go back to reference Doig CJ, Zygun DA, Fick GH, Laupland KB, Boiteau PJ, Shahpori R, et al. Study of clinical course of organ dysfunction in intensive care. Crit Care Med. 2004;32(2):384–90.CrossRef Doig CJ, Zygun DA, Fick GH, Laupland KB, Boiteau PJ, Shahpori R, et al. Study of clinical course of organ dysfunction in intensive care. Crit Care Med. 2004;32(2):384–90.CrossRef
32.
go back to reference Badreldin A, Elsobky S, Lehmann T, Brehm BB, Doenst T, Hekmat K. Daily-mean-SOFA, a new derivative to increase accuracy of mortality prediction in cardiac surgical intensive care units. Thor Cardiovasc Surg. 2012;60(1):43–50. Badreldin A, Elsobky S, Lehmann T, Brehm BB, Doenst T, Hekmat K. Daily-mean-SOFA, a new derivative to increase accuracy of mortality prediction in cardiac surgical intensive care units. Thor Cardiovasc Surg. 2012;60(1):43–50.
33.
go back to reference Holder AL, Overton E, Lyu P, Kempker JA, Nemati S, Razmi F, et al. Serial daily organ failure assessment beyond ICU day 5 does not independently add precision to ICU risk-of-death prediction. Crit Care Med. 2017;45(12):2014–22.CrossRef Holder AL, Overton E, Lyu P, Kempker JA, Nemati S, Razmi F, et al. Serial daily organ failure assessment beyond ICU day 5 does not independently add precision to ICU risk-of-death prediction. Crit Care Med. 2017;45(12):2014–22.CrossRef
34.
go back to reference Badawi O, Liu X, Hassan E, Amelung PJ, Swami S. Evaluation of ICU risk models adapted for use as continuous markers of severity of illness throughout the ICU stay. Crit Care Med. 2018;46(3):361–7.CrossRef Badawi O, Liu X, Hassan E, Amelung PJ, Swami S. Evaluation of ICU risk models adapted for use as continuous markers of severity of illness throughout the ICU stay. Crit Care Med. 2018;46(3):361–7.CrossRef
35.
go back to reference Kramer AH, Zygun DA, Doig CJ, Zuege DJ. Incidence of neurologic death among patients with brain injury: a cohort study in a Canadian health region. CMAJ. 2013;185(18):E838–45.CrossRef Kramer AH, Zygun DA, Doig CJ, Zuege DJ. Incidence of neurologic death among patients with brain injury: a cohort study in a Canadian health region. CMAJ. 2013;185(18):E838–45.CrossRef
36.
go back to reference Brundin-Mather R, Soo A, Zuege D, Niven DJ, Fiest K, Doig CJ, et al. Secondary EMR data for quality improvement and research: a comparison of manual and electronic data collection from an integrated critical care electronic medical record system. J Crit Care. 2018;47:295–301.CrossRef Brundin-Mather R, Soo A, Zuege D, Niven DJ, Fiest K, Doig CJ, et al. Secondary EMR data for quality improvement and research: a comparison of manual and electronic data collection from an integrated critical care electronic medical record system. J Crit Care. 2018;47:295–301.CrossRef
37.
go back to reference Anami EH, Grion CM, Cardoso LT, Kauss IA, Thomazini MC, Zampa HB, Bonametti AM, Matsuo T. Serial evaluation of SOFA score in a Brazilian teaching hospital. Intensive Crit Care Nurs. 2010;26(20):75–82.CrossRef Anami EH, Grion CM, Cardoso LT, Kauss IA, Thomazini MC, Zampa HB, Bonametti AM, Matsuo T. Serial evaluation of SOFA score in a Brazilian teaching hospital. Intensive Crit Care Nurs. 2010;26(20):75–82.CrossRef
38.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1998;44(3):837–45.CrossRef DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1998;44(3):837–45.CrossRef
40.
go back to reference Højsgaard S, Halekoh U, Yan J. The R package geepack for generalized estimating equations. J Stat Softw. 2005;15(2):1–11. Højsgaard S, Halekoh U, Yan J. The R package geepack for generalized estimating equations. J Stat Softw. 2005;15(2):1–11.
42.
go back to reference Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005;21(20):3940–1.CrossRef Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005;21(20):3940–1.CrossRef
43.
go back to reference Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.CrossRef Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.CrossRef
44.
go back to reference Knox DB, Lanspa MJ, Pratt CM, Kuttler KG, Jones JP, Brown SM. Glasgow coma scale dominates the association between admission sequential organ failure assessment score and 30-day mortality in a mixed intensive care unit population. J Crit Care. 2014;29(5):780–5.CrossRef Knox DB, Lanspa MJ, Pratt CM, Kuttler KG, Jones JP, Brown SM. Glasgow coma scale dominates the association between admission sequential organ failure assessment score and 30-day mortality in a mixed intensive care unit population. J Crit Care. 2014;29(5):780–5.CrossRef
45.
go back to reference Keilwagen J, Grosse I, Grau J. Area under precision-recall curves for weighted and unweighted data. PLoS One. 2014;9(3):e92209.CrossRef Keilwagen J, Grosse I, Grau J. Area under precision-recall curves for weighted and unweighted data. PLoS One. 2014;9(3):e92209.CrossRef
46.
go back to reference Grau J, Grosse I, Keilwagen J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics. 2015;31(15):2595–7.CrossRef Grau J, Grosse I, Keilwagen J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics. 2015;31(15):2595–7.CrossRef
47.
go back to reference Russell J, Singer J, Bernard G, Wheeler A, Fulkerson W, Hudson L, et al. Changing patterns of organ dysfunction in early human sepsis is related to morbidity. Crit Care Med. 2000;28:3405–11.CrossRef Russell J, Singer J, Bernard G, Wheeler A, Fulkerson W, Hudson L, et al. Changing patterns of organ dysfunction in early human sepsis is related to morbidity. Crit Care Med. 2000;28:3405–11.CrossRef
48.
go back to reference Prentice R. Surrogate endpoints in clinical trials: definitions and operational criteria. Stat Med. 1989;8:831–40.CrossRef Prentice R. Surrogate endpoints in clinical trials: definitions and operational criteria. Stat Med. 1989;8:831–40.CrossRef
49.
go back to reference Rubenfeld GD. Surrogate measures of patient-centered outcomes in critical care. In: Angus DC, Carlet J, editors. Surviving intensive care. Berlin: Springer; 2003. p. 169–80.CrossRef Rubenfeld GD. Surrogate measures of patient-centered outcomes in critical care. In: Angus DC, Carlet J, editors. Surviving intensive care. Berlin: Springer; 2003. p. 169–80.CrossRef
50.
go back to reference Vincent JL. Endpoints in sepsis trials: more than just 28-day mortality? Crit Care Med. 2004;32:S209–13.CrossRef Vincent JL. Endpoints in sepsis trials: more than just 28-day mortality? Crit Care Med. 2004;32:S209–13.CrossRef
51.
go back to reference Kleiman DA, Barie PS. Survival in fully manifest multiple organ dysfunction syndrome. Surg Infect. 2014;15(4):445–9.CrossRef Kleiman DA, Barie PS. Survival in fully manifest multiple organ dysfunction syndrome. Surg Infect. 2014;15(4):445–9.CrossRef
52.
go back to reference Cabre L, Mancebo J, Solsona JF, Saura P, Gich I, Blanch L, et al. Multicenter study of the multiple organ dysfunction syndrome in intensive care units: the usefulness of sequential organ failure assessment scores in decision making. Int Care Med. 2005;31:927–33.CrossRef Cabre L, Mancebo J, Solsona JF, Saura P, Gich I, Blanch L, et al. Multicenter study of the multiple organ dysfunction syndrome in intensive care units: the usefulness of sequential organ failure assessment scores in decision making. Int Care Med. 2005;31:927–33.CrossRef
53.
go back to reference Houthooft R, Ruyssinck J, van der Herten J, Stijven S, Couckuyt I, Gadeyne B, et al. Predictive modelling of survival and length of stay in critically ill patients using sequential organ failure scores. Artif Intell Med. 2015;63(3):191–207.CrossRef Houthooft R, Ruyssinck J, van der Herten J, Stijven S, Couckuyt I, Gadeyne B, et al. Predictive modelling of survival and length of stay in critically ill patients using sequential organ failure scores. Artif Intell Med. 2015;63(3):191–207.CrossRef
54.
go back to reference Rehman MF, Siddiqui MS. Predicting death and disability, is it really possible? A medical ICU prognostication model study. Crit Care Med. 2014;42:2449–50.CrossRef Rehman MF, Siddiqui MS. Predicting death and disability, is it really possible? A medical ICU prognostication model study. Crit Care Med. 2014;42:2449–50.CrossRef
55.
go back to reference Meadow W, Pohlman A, Reynolds D, Rand L, Correia C, Christoph E, et al. Power and limitations of daily prognostication of death in the medical ICU for outcomes in the following 6 months. Crit Care Med. 2014;42:2387–92.CrossRef Meadow W, Pohlman A, Reynolds D, Rand L, Correia C, Christoph E, et al. Power and limitations of daily prognostication of death in the medical ICU for outcomes in the following 6 months. Crit Care Med. 2014;42:2387–92.CrossRef
56.
go back to reference Hsieh YZ, Su MC, Wang CH, Wang PC. Prediction of survival of ICU patients using computational intelligence. Comp Biol Med. 2014;47:13–9.CrossRef Hsieh YZ, Su MC, Wang CH, Wang PC. Prediction of survival of ICU patients using computational intelligence. Comp Biol Med. 2014;47:13–9.CrossRef
57.
go back to reference Sandri M, Berchialla P, Baldi I, Gregori D, De Blasi RA. Dynamic Bayesian networks to predict sequences of organ failures in patients admitted to ICU. J Biomed Informatics. 2014;48:106–13.CrossRef Sandri M, Berchialla P, Baldi I, Gregori D, De Blasi RA. Dynamic Bayesian networks to predict sequences of organ failures in patients admitted to ICU. J Biomed Informatics. 2014;48:106–13.CrossRef
58.
go back to reference Sekulic AD, Trpkovic SV, Pavlovic AP, Marinkovic OM, Ilic AN. Scoring systems in assessing survival of critically ill patients. Med Sci Monit. 2015;21:2621–9.CrossRef Sekulic AD, Trpkovic SV, Pavlovic AP, Marinkovic OM, Ilic AN. Scoring systems in assessing survival of critically ill patients. Med Sci Monit. 2015;21:2621–9.CrossRef
Metadata
Title
Describing organ dysfunction in the intensive care unit: a cohort study of 20,000 patients
Authors
Andrea Soo
Danny J. Zuege
Gordon H. Fick
Daniel J. Niven
Luc R. Berthiaume
Henry T. Stelfox
Christopher J. Doig
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Care
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2459-9

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue