Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Acute Respiratory Distress-Syndrome | Research

Heterogeneity of regional inflection points from pressure-volume curves assessed by electrical impedance tomography

Authors: Gaetano Scaramuzzo, Savino Spadaro, Andreas D. Waldmann, Stephan H. Böhm, Riccardo Ragazzi, Elisabetta Marangoni, Valentina Alvisi, Elena Spinelli, Tommaso Mauri, Carlo Alberto Volta

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

The pressure-volume (P-V) curve has been suggested as a bedside tool to set mechanical ventilation; however, it reflects a global behavior of the lung without giving information on the regional mechanical properties. Regional P-V (PVr) curves derived from electrical impedance tomography (EIT) could provide valuable clinical information at bedside, being able to explore the regional mechanics of the lung. In the present study, we hypothesized that regional P-V curves would provide different information from those obtained from global P-V curves, both in terms of upper and lower inflection points. Therefore, we constructed pressure-volume curves for each pixel row from non-dependent to dependent lung regions of patients affected by acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS).

Methods

We analyzed slow-inflation P-V maneuvers data from 12 mechanically ventilated patients. During the inflation, the pneumotachograph was used to record flow and airway pressure while the EIT signals were recorded digitally. From each maneuver, global respiratory system P-V curve (PVg) and PVr curves were obtained, each one corresponding to a pixel row within the EIT image. PVg and PVr curves were fitted using a sigmoidal equation, and the upper (UIP) and lower (LIP) inflection points for each curve were mathematically identified; LIP and UIP from PVg were respectively called LIPg and UIPg. From each measurement, the highest regional LIP (LIPrMAX) and the lowest regional UIP (UIPrMIN) were identified and the pressure difference between those two points was defined as linear driving pressure (ΔPLIN).

Results

A significant difference (p < 0.001) was found between LIPrMAX (15.8 [9.2–21.1] cmH2O) and LIPg (2.9 [2.2–8.9] cmH2O); in all measurements, the LIPrMAX was higher than the corresponding LIPg. We found a significant difference (p < 0.005) between UIPrMIN (30.1 [23.5–37.6] cmH2O) and UIPg (40.5 [34.2–45] cmH2O), the UIPrMIN always being lower than the corresponding UIPg. Median ΔPLIN was 12.6 [7.4–20.8] cmH2O and in 56% of cases was < 14 cmH2O.

Conclusions

Regional inflection points derived by EIT show high variability reflecting lung heterogeneity. Regional P-V curves obtained by EIT could convey more sensitive information than global lung mechanics on the pressures within which all lung regions express linear compliance.

Trial registration

Clinicaltrials.gov, NCT02907840. Registered on 20 September 2016.
Appendix
Available only for authorised users
Literature
3.
go back to reference Spadaro S, Park M, Turrini C, Tunstall T, Thwaites R, Mauri T. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine. J Inflamm (Lond). 2019;16:1.CrossRef Spadaro S, Park M, Turrini C, Tunstall T, Thwaites R, Mauri T. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine. J Inflamm (Lond). 2019;16:1.CrossRef
13.
go back to reference Santini A, Spinelli E, Langer T, Spadaro S, Grasselli G, Mauri T. Thoracic electrical impedance tomography: an adaptive monitor for dynamic organs. J Emerg Crit Care Med. 2018;2:1-11.CrossRef Santini A, Spinelli E, Langer T, Spadaro S, Grasselli G, Mauri T. Thoracic electrical impedance tomography: an adaptive monitor for dynamic organs. J Emerg Crit Care Med. 2018;2:1-11.CrossRef
17.
go back to reference Waldmann AD, Wodack KH, März A, Ukere A, Trepte CJ, Böhm SH, Reuter DA. Performance of novel patient interface for electrical impedance tomography applications. J Med Biol Eng. 2017;37:561–6.CrossRef Waldmann AD, Wodack KH, März A, Ukere A, Trepte CJ, Böhm SH, Reuter DA. Performance of novel patient interface for electrical impedance tomography applications. J Med Biol Eng. 2017;37:561–6.CrossRef
20.
go back to reference Kunst PW, Böhm SH, Vazquez de Anda G, Amato MB, Lachmann B, Postmus PE, et al. Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med. 2000;28:178–83.CrossRef Kunst PW, Böhm SH, Vazquez de Anda G, Amato MB, Lachmann B, Postmus PE, et al. Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med. 2000;28:178–83.CrossRef
29.
go back to reference Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8. https://doi.org/10.1056/NEJM200005043421801.CrossRef Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8. https://​doi.​org/​10.​1056/​NEJM200005043421​801.CrossRef
33.
go back to reference Slutsky AS. Consensus conference on mechanical ventilation--January 28-30, 1993 at Northbrook, Illinois, USA. Part I. European Society of Intensive Care Medicine, the ACCP and the SCCM. Intensive Care Med. 1994;20(1):64–79.CrossRef Slutsky AS. Consensus conference on mechanical ventilation--January 28-30, 1993 at Northbrook, Illinois, USA. Part I. European Society of Intensive Care Medicine, the ACCP and the SCCM. Intensive Care Med. 1994;20(1):64–79.CrossRef
Metadata
Title
Heterogeneity of regional inflection points from pressure-volume curves assessed by electrical impedance tomography
Authors
Gaetano Scaramuzzo
Savino Spadaro
Andreas D. Waldmann
Stephan H. Böhm
Riccardo Ragazzi
Elisabetta Marangoni
Valentina Alvisi
Elena Spinelli
Tommaso Mauri
Carlo Alberto Volta
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2417-6

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue