Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Research

Systematic review of incretin therapy during peri-operative and intensive care

Authors: Abraham H Hulst, Mark P Plummer, Markus W Hollmann, J Hans DeVries, Benedikt Preckel, Adam M Deane, Jeroen Hermanides

Published in: Critical Care | Issue 1/2018

Login to get access

Abstract

Background

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are incretin hormones. By lowering blood glucose in a glucose-dependent manner, incretin-based therapies represent a novel and promising intervention to treat hyperglycaemia in hospital settings. We performed a systematic review of the literature for all current applications of incretin-based therapies in the peri-operative and critical care settings.

Methods

We searched MEDLINE, the Cochrane Library, and Embase databases for all randomised controlled trials using exogenous GLP-1, GLP-1 receptor agonists, exogenous GIP and dipeptidyl peptidase IV inhibitors in the setting of adult peri-operative care or intensive care. We defined no comparator treatment. Outcomes of interest included blood glucose, frequency of hypoglycaemia and insulin administration.

Results

Of the 1190 articles identified during the initial literature search, 38 fulfilled criteria for full-text review, and 19 single-centre studies were subsequently included in the qualitative review. Of the 18 studies reporting glycaemic control, improvement was reported in 15, defined as lower glucose concentrations in 12 and as reduced insulin administration (with similar glucose concentrations) in 3. Owing to heterogeneity, meta-analysis was possible only for the outcome of hypoglycaemia. This revealed an incidence of 7.4% in those receiving incretin-based therapies and 6.8% in comparator groups (P = 0.94).

Conclusions

In small, single-centre studies, incretin-based therapies lowered blood glucose and reduced insulin administration without increasing the incidence of hypoglycaemia.

Trial registration

PROSPERO, CRD42017071926.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.CrossRef Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.CrossRef
2.
go back to reference Krinsley JS, Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med. 2007;35:2262–7.CrossRef Krinsley JS, Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med. 2007;35:2262–7.CrossRef
3.
go back to reference Krinsley JS, Egi M, Kiss A, Devendra AN, Schuetz P, Maurer PM, et al. Diabetic status and the relation of the three domains of glycemic control to mortality in critically ill patients: an international multicenter cohort study. Crit Care. 2013;17:R37.CrossRef Krinsley JS, Egi M, Kiss A, Devendra AN, Schuetz P, Maurer PM, et al. Diabetic status and the relation of the three domains of glycemic control to mortality in critically ill patients: an international multicenter cohort study. Crit Care. 2013;17:R37.CrossRef
4.
go back to reference American Diabetes Association. Diabetes care in the hospital. Diabetes Care. 2016;39(Suppl 1):S99–104. American Diabetes Association. Diabetes care in the hospital. Diabetes Care. 2016;39(Suppl 1):S99–104.
5.
go back to reference Egi M, Bellomo R, Stachowski E, French CJ, Hart GK, Taori G, et al. Hypoglycemia and outcome in critically ill patients. Mayo Clin Proc. 2010;85:217–24.CrossRef Egi M, Bellomo R, Stachowski E, French CJ, Hart GK, Taori G, et al. Hypoglycemia and outcome in critically ill patients. Mayo Clin Proc. 2010;85:217–24.CrossRef
6.
go back to reference Krinsley JS, Schultz MJ, Spronk PE, Harmsen RE, van Braam Houckgeest F, van der Sluijs JP, et al. Mild hypoglycemia is independently associated with increased mortality in the critically ill. Crit Care. 2011;15:R173.CrossRef Krinsley JS, Schultz MJ, Spronk PE, Harmsen RE, van Braam Houckgeest F, van der Sluijs JP, et al. Mild hypoglycemia is independently associated with increased mortality in the critically ill. Crit Care. 2011;15:R173.CrossRef
7.
go back to reference Ali NA, O’Brien JM, Dungan K, Phillips G, Marsh CB, Lemeshow S, et al. Glucose variability and mortality in patients with sepsis. Crit Care Med. 2008;36:2316–21.CrossRef Ali NA, O’Brien JM, Dungan K, Phillips G, Marsh CB, Lemeshow S, et al. Glucose variability and mortality in patients with sepsis. Crit Care Med. 2008;36:2316–21.CrossRef
8.
go back to reference Plummer MP, Finnis ME, Horsfall M, Ly M, Kar P, Abdelhamid YA, et al. Prior exposure to hyperglycaemia attenuates the relationship between glycaemic variability during critical illness and mortality. Crit Care Resusc. 2016;18:189–97.PubMed Plummer MP, Finnis ME, Horsfall M, Ly M, Kar P, Abdelhamid YA, et al. Prior exposure to hyperglycaemia attenuates the relationship between glycaemic variability during critical illness and mortality. Crit Care Resusc. 2016;18:189–97.PubMed
9.
go back to reference Hermanides J, Vriesendorp TM, Bosman RJ, Zandstra DF, Hoekstra JB, Devries JH. Glucose variability is associated with intensive care unit mortality. Crit Care Med. 2010;38:838–42.CrossRef Hermanides J, Vriesendorp TM, Bosman RJ, Zandstra DF, Hoekstra JB, Devries JH. Glucose variability is associated with intensive care unit mortality. Crit Care Med. 2010;38:838–42.CrossRef
10.
go back to reference Polderman JAW, Hollmann MW, DeVries JH, Preckel B, Hermanides J. Perioperative hyperglycemia and glucose variability in gynecologic laparotomies. J Diabetes Sci Technol. 2016;10:145–50.CrossRef Polderman JAW, Hollmann MW, DeVries JH, Preckel B, Hermanides J. Perioperative hyperglycemia and glucose variability in gynecologic laparotomies. J Diabetes Sci Technol. 2016;10:145–50.CrossRef
11.
go back to reference Plummer MP, Chapman MJ, Horowitz M, Deane AM. Incretins and the intensivist: what are they and what does an intensivist need to know about them? Crit Care. 2014;18:205.CrossRef Plummer MP, Chapman MJ, Horowitz M, Deane AM. Incretins and the intensivist: what are they and what does an intensivist need to know about them? Crit Care. 2014;18:205.CrossRef
12.
go back to reference Deane AM, Jeppesen PB. Understanding incretins. Intensive Care Med. 2014;40:1751–4.CrossRef Deane AM, Jeppesen PB. Understanding incretins. Intensive Care Med. 2014;40:1751–4.CrossRef
13.
go back to reference Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia. 2015;58:429–42.CrossRef Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia. 2015;58:429–42.CrossRef
14.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRef Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRef
15.
go back to reference Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210.CrossRef Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210.CrossRef
16.
go back to reference Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef
17.
go back to reference Lipš M, Mráz M, Kloučková J, Kopecký P, Dobiáš M, Křížová J, et al. The effect of continuous exenatide infusion on cardiac function and perioperative glucose control in cardiac surgery patients: a single-blind, randomized, controlled trial. Diabetes Obes Metab. 2017;19:1818–22.CrossRef Lipš M, Mráz M, Kloučková J, Kopecký P, Dobiáš M, Křížová J, et al. The effect of continuous exenatide infusion on cardiac function and perioperative glucose control in cardiac surgery patients: a single-blind, randomized, controlled trial. Diabetes Obes Metab. 2017;19:1818–22.CrossRef
18.
go back to reference Polderman JAW, Van Steen SCJ, Thiel B, Godfried MB, Houweling PL, Hollmann MW, et al. Peri-operative management of patients with type-2 diabetes mellitus undergoing non-cardiac surgery using liraglutide, glucose–insulin–potassium infusion or intravenous insulin bolus regimens: a randomised controlled trial. Anaesthesia. 2018;73:332–9.CrossRef Polderman JAW, Van Steen SCJ, Thiel B, Godfried MB, Houweling PL, Hollmann MW, et al. Peri-operative management of patients with type-2 diabetes mellitus undergoing non-cardiac surgery using liraglutide, glucose–insulin–potassium infusion or intravenous insulin bolus regimens: a randomised controlled trial. Anaesthesia. 2018;73:332–9.CrossRef
19.
go back to reference Besch G, Perrotti A, Mauny F, Puyraveau M, Baltres M, Flicoteaux G, et al. Clinical effectiveness of intravenous exenatide infusion in perioperative glycemic control after coronary artery bypass graft surgery. Anesthesiology. 2017;127:775–87.CrossRef Besch G, Perrotti A, Mauny F, Puyraveau M, Baltres M, Flicoteaux G, et al. Clinical effectiveness of intravenous exenatide infusion in perioperative glycemic control after coronary artery bypass graft surgery. Anesthesiology. 2017;127:775–87.CrossRef
20.
go back to reference Brackbill ML, Rahman A, Sandy JS, Stam MD, Harralson AF. Adjunctive sitagliptin therapy in postoperative cardiac surgery patients: a pilot study. Int J Endocrinol. 2012;2012:1–6.CrossRef Brackbill ML, Rahman A, Sandy JS, Stam MD, Harralson AF. Adjunctive sitagliptin therapy in postoperative cardiac surgery patients: a pilot study. Int J Endocrinol. 2012;2012:1–6.CrossRef
21.
go back to reference Deane AM, Chapman MJ, Fraser RJL, Burgstad CM, Besanko LK, Horowitz M. The effect of exogenous glucagon-like peptide-1 on the glycaemic response to small intestinal nutrient in the critically ill: a randomised double-blind placebo-controlled cross over study. Crit Care. 2009;13:R67.CrossRef Deane AM, Chapman MJ, Fraser RJL, Burgstad CM, Besanko LK, Horowitz M. The effect of exogenous glucagon-like peptide-1 on the glycaemic response to small intestinal nutrient in the critically ill: a randomised double-blind placebo-controlled cross over study. Crit Care. 2009;13:R67.CrossRef
22.
go back to reference Deane AM, Chapman MJ, Fraser RJL, Summers MJ, Zaknic AV, Storey JP, et al. Effects of exogenous glucagon-like peptide-1 on gastric emptying and glucose absorption in the critically ill: relationship to glycemia. Crit Care Med. 2010;38:1261–9.CrossRef Deane AM, Chapman MJ, Fraser RJL, Summers MJ, Zaknic AV, Storey JP, et al. Effects of exogenous glucagon-like peptide-1 on gastric emptying and glucose absorption in the critically ill: relationship to glycemia. Crit Care Med. 2010;38:1261–9.CrossRef
23.
go back to reference Deane AM, Summers MJ, Zaknic A, Chapman MJ, Fraser RJL, Di Bartolomeo AE, et al. Exogenous glucagon-like peptide-1 attenuates the glycaemic response to postpyloric nutrient infusion in critically ill patients with type-2 diabetes. Crit Care. 2011;15:R35.CrossRef Deane AM, Summers MJ, Zaknic A, Chapman MJ, Fraser RJL, Di Bartolomeo AE, et al. Exogenous glucagon-like peptide-1 attenuates the glycaemic response to postpyloric nutrient infusion in critically ill patients with type-2 diabetes. Crit Care. 2011;15:R35.CrossRef
24.
go back to reference Galiatsatos P, Gibson BR, Rabiee A, Carlson O, Egan JM, Shannon RP, et al. The glucoregulatory benefits of glucagon-like peptide-1 (7-36) amide infusion during intensive insulin therapy in critically ill surgical patients: a pilot study. Crit Care Med. 2014;42:638–45.CrossRef Galiatsatos P, Gibson BR, Rabiee A, Carlson O, Egan JM, Shannon RP, et al. The glucoregulatory benefits of glucagon-like peptide-1 (7-36) amide infusion during intensive insulin therapy in critically ill surgical patients: a pilot study. Crit Care Med. 2014;42:638–45.CrossRef
25.
go back to reference Holmberg FEO, Ottas KA, Andreasen C, Perko MJ, Møller CH, Engstrøm T, et al. Conditioning techniques and ischemic reperfusion injury in relation to on-pump cardiac surgery. Scand Cardiovasc J. 2014;48:241–8.CrossRef Holmberg FEO, Ottas KA, Andreasen C, Perko MJ, Møller CH, Engstrøm T, et al. Conditioning techniques and ischemic reperfusion injury in relation to on-pump cardiac surgery. Scand Cardiovasc J. 2014;48:241–8.CrossRef
26.
go back to reference Kar P, Cousins CE, Annink CE, Jones KL, Chapman MJ, Meier JJ, et al. Effects of glucose-dependent insulinotropic polypeptide on gastric emptying, glycaemia and insulinaemia during critical illness: a prospective, double blind, randomised, crossover study. Crit Care. 2015;19:20.CrossRef Kar P, Cousins CE, Annink CE, Jones KL, Chapman MJ, Meier JJ, et al. Effects of glucose-dependent insulinotropic polypeptide on gastric emptying, glycaemia and insulinaemia during critical illness: a prospective, double blind, randomised, crossover study. Crit Care. 2015;19:20.CrossRef
27.
go back to reference Kohl BA, Hammond MS, Cucchiara AJ, Ochroch EA. Intravenous GLP-1 (7-36) amide for prevention of hyperglycemia during cardiac surgery: a randomized, double-blind, placebo-controlled study. J Cardiothorac Vasc Anesth. 2014;28:618–25.CrossRef Kohl BA, Hammond MS, Cucchiara AJ, Ochroch EA. Intravenous GLP-1 (7-36) amide for prevention of hyperglycemia during cardiac surgery: a randomized, double-blind, placebo-controlled study. J Cardiothorac Vasc Anesth. 2014;28:618–25.CrossRef
28.
go back to reference Lee MY, Fraser JD, Chapman MJ, Sundararajan K, Umapathysivam MM, Summer MJ, et al. The effect of exogenous glucose- dependent insulinotropic polypeptide in combination with glucagon-like peptide-1 on glycemia in the critically ill. Diabetes Care. 2013;36:3333–6.CrossRef Lee MY, Fraser JD, Chapman MJ, Sundararajan K, Umapathysivam MM, Summer MJ, et al. The effect of exogenous glucose- dependent insulinotropic polypeptide in combination with glucagon-like peptide-1 on glycemia in the critically ill. Diabetes Care. 2013;36:3333–6.CrossRef
29.
go back to reference Meier JJ, Weyhe D, Michaely M, Senkal M, Zumtobel V, M a N, et al. Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in patients with type 2 diabetes. Crit Care Med. 2004;32:848–51.CrossRef Meier JJ, Weyhe D, Michaely M, Senkal M, Zumtobel V, M a N, et al. Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in patients with type 2 diabetes. Crit Care Med. 2004;32:848–51.CrossRef
30.
go back to reference Miller A, Deane AM, Plummer MP, Cousins CE, Chapple LAS, Horowitz M, et al. Exogenous glucagon-like peptide-1 attenuates glucose absorption and reduces blood glucose concentration after small intestinal glucose delivery in critical illness. Crit Care Resusc. 2017;19:37–42.PubMed Miller A, Deane AM, Plummer MP, Cousins CE, Chapple LAS, Horowitz M, et al. Exogenous glucagon-like peptide-1 attenuates glucose absorption and reduces blood glucose concentration after small intestinal glucose delivery in critical illness. Crit Care Resusc. 2017;19:37–42.PubMed
31.
go back to reference Müssig K, Oncü A, Lindauer P, Heininger A, Aebert H, Unertl K, et al. Effects of intravenous glucagon-like peptide-1 on glucose control and hemodynamics after coronary artery bypass surgery in patients with type 2 diabetes. Am J Cardiol. 2008;102:646–7.CrossRef Müssig K, Oncü A, Lindauer P, Heininger A, Aebert H, Unertl K, et al. Effects of intravenous glucagon-like peptide-1 on glucose control and hemodynamics after coronary artery bypass surgery in patients with type 2 diabetes. Am J Cardiol. 2008;102:646–7.CrossRef
32.
go back to reference Pasquel FJ, Gianchandani R, Rubin DJ, Dungan KM, Anzola I, Gomez PC, et al. Efficacy of sitagliptin for the hospital management of general medicine and surgery patients with type 2 diabetes (Sita-Hospital): a multicentre, prospective, open-label, non-inferiority randomised trial. Lancet Diabetes Endocrinol. 2017;5:125–33.CrossRef Pasquel FJ, Gianchandani R, Rubin DJ, Dungan KM, Anzola I, Gomez PC, et al. Efficacy of sitagliptin for the hospital management of general medicine and surgery patients with type 2 diabetes (Sita-Hospital): a multicentre, prospective, open-label, non-inferiority randomised trial. Lancet Diabetes Endocrinol. 2017;5:125–33.CrossRef
33.
go back to reference Umpierrez GE, Gianchandani R, Smiley D, Jacobs S, Wesorick D, Newton C, et al. Safety and efficacy of sitagliptin therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes. J Clin Endocrinol Metab. 2014;99:3430–5. Umpierrez GE, Gianchandani R, Smiley D, Jacobs S, Wesorick D, Newton C, et al. Safety and efficacy of sitagliptin therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes. J Clin Endocrinol Metab. 2014;99:3430–5.
34.
go back to reference Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ, Maher TD, et al. Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol. 2007;100:824–9.CrossRef Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ, Maher TD, et al. Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol. 2007;100:824–9.CrossRef
35.
go back to reference Garg R, Schuman B, Hurwitz S, Metzger C, Bhandari S. Safety and efficacy of saxagliptin for glycemic control in non-critically ill hospitalized patients. BMJ Open Diabetes Res Care. 2017;5:e000394.CrossRef Garg R, Schuman B, Hurwitz S, Metzger C, Bhandari S. Safety and efficacy of saxagliptin for glycemic control in non-critically ill hospitalized patients. BMJ Open Diabetes Res Care. 2017;5:e000394.CrossRef
36.
go back to reference Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:–d7771.CrossRef Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:–d7771.CrossRef
37.
go back to reference Sikirica M, Martin A, Wood R, Leith A, Piercy J, Higgins V. Reasons for discontinuation of GLP1 receptor agonists: data from a real-world cross-sectional survey of physicians and their patients with type 2 diabetes. Diabetes Metab Syndr Obes Targets Ther. 2017;10:403–12.CrossRef Sikirica M, Martin A, Wood R, Leith A, Piercy J, Higgins V. Reasons for discontinuation of GLP1 receptor agonists: data from a real-world cross-sectional survey of physicians and their patients with type 2 diabetes. Diabetes Metab Syndr Obes Targets Ther. 2017;10:403–12.CrossRef
38.
go back to reference Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.CrossRef Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.CrossRef
39.
go back to reference Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.CrossRef Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.CrossRef
40.
go back to reference Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.CrossRef Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.CrossRef
41.
go back to reference Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146–51.CrossRef Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146–51.CrossRef
42.
go back to reference Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12:694–9.CrossRef Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12:694–9.CrossRef
43.
go back to reference Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction. JAMA. 2016;316:500–8.CrossRef Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction. JAMA. 2016;316:500–8.CrossRef
44.
go back to reference Plummer MP, Bellomo R, Cousins CE, Annink CE, Sundararajan K, Reddi BAJ, et al. Dysglycaemia in the critically ill and the interaction of chronic and acute glycaemia with mortality. Intensive Care Med. 2014;40:973–80.CrossRef Plummer MP, Bellomo R, Cousins CE, Annink CE, Sundararajan K, Reddi BAJ, et al. Dysglycaemia in the critically ill and the interaction of chronic and acute glycaemia with mortality. Intensive Care Med. 2014;40:973–80.CrossRef
45.
go back to reference Hulst AH, Visscher MJ, Godfried MB, Thiel B, Gerritse BM, Scohy TV, et al. Study protocol of the randomised placebo-controlled GLOBE trial: GLP-1 for bridging of hyperglycaemia during cardiac surgery. BMJ Open. 2018;8:e022189.CrossRef Hulst AH, Visscher MJ, Godfried MB, Thiel B, Gerritse BM, Scohy TV, et al. Study protocol of the randomised placebo-controlled GLOBE trial: GLP-1 for bridging of hyperglycaemia during cardiac surgery. BMJ Open. 2018;8:e022189.CrossRef
Metadata
Title
Systematic review of incretin therapy during peri-operative and intensive care
Authors
Abraham H Hulst
Mark P Plummer
Markus W Hollmann
J Hans DeVries
Benedikt Preckel
Adam M Deane
Jeroen Hermanides
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-2197-4

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue