Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Research

Validation of carbon dioxide production (VCO2) as a tool to calculate resting energy expenditure (REE) in mechanically ventilated critically ill patients: a retrospective observational study

Published in: Critical Care | Issue 1/2018

Login to get access

Abstract

Background

Indirect calorimetry (IC) measurement is considered the gold standard for the assessment of resting energy expenditure (REE). It is based on the measurement of oxygen and carbon dioxide consumption (VO2 and VCO2, respectively). However, its use is limited by cost and technical issues. It has been proposed that, in critically ill patients, the analysis of VCO2 obtained from the ventilator alone may be used as an accurate method to assess REE in ventilated patients. This retrospective study aimed to assess the accuracy of VCO2 measurement alone in the determination of REE.

Methods

This was a retrospective study conducted at the general intensive care unit of a single university-affiliated tertiary medical center. Patients included were invasively ventilated and their REE was measured by using IC. The respiratory quotients (RQs) were set at 0.8, 0.85, and 0.89. Data were collected from computerized patient files. REE obtained from the ventilator by using VCO2 (REE-VCO2) alone was compared with REE obtained from IC (REE-IC).

Results

Measurements were obtained for 80 patients, and 497 REE-IC measurements were compared with REE-VCO2 obtained at the same time. The mean REE-IC was 2059.5 ± 491.7 kcal/d. The mean REE-RQs corresponding to RQs of 0.80, 0.85, and 0.89 were 1936.8 ± 680.0, 2017.8 ± 708.8, and 2122.1 ± 745.4 kcal/d, respectively. REE-VCO2 derived from an RQ of 0.85 had the lowest mean difference from REE-IC. Whereas accuracy was higher using an RQ of 0.85, agreement (between 85% and 115%) was highest using an RQ of 0.89.

Conclusions

The level of agreement of REE obtained from VCO2 readings with REE obtained from IC was generally low. IC continues to be the recommended method for REE assessment.
Literature
1.
go back to reference Reid CL. Poor agreement between continuous measurements of energy expenditure and routinely used prediction equations in intensive care unit patients. Clin Nutr. 2007;26:649–57.CrossRefPubMed Reid CL. Poor agreement between continuous measurements of energy expenditure and routinely used prediction equations in intensive care unit patients. Clin Nutr. 2007;26:649–57.CrossRefPubMed
2.
go back to reference De Waele E, Opsomer T, Honoré PM, Diltoer M, Mattens S, Huyghens L, et al. Measured versus calculated resting energy expenditure in critically ill adult patients. Do mathematics match the gold standard? Minerva Anestesiol. 2015;81:272–82.PubMed De Waele E, Opsomer T, Honoré PM, Diltoer M, Mattens S, Huyghens L, et al. Measured versus calculated resting energy expenditure in critically ill adult patients. Do mathematics match the gold standard? Minerva Anestesiol. 2015;81:272–82.PubMed
3.
go back to reference Zusman O, Kagan I, Theilla M, Ben David I, Cohen J, Singer P. Predictive equations versus measured energy expenditure by indirect calorimetry: a retrospective validation. Clin Nutr. 2018; Accepted. [Epub ahead of print]. Zusman O, Kagan I, Theilla M, Ben David I, Cohen J, Singer P. Predictive equations versus measured energy expenditure by indirect calorimetry: a retrospective validation. Clin Nutr. 2018; Accepted. [Epub ahead of print].
4.
go back to reference Tatucu-Babet OA, Ridley EJ, Tierney AC. The prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review. JPEN J Parenter Enteral Nutr. 2016;40:212–25.CrossRefPubMed Tatucu-Babet OA, Ridley EJ, Tierney AC. The prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review. JPEN J Parenter Enteral Nutr. 2016;40:212–25.CrossRefPubMed
5.
go back to reference Stapel SN, Grooth HJ, Alimohamad H, Elbers PW, Girbes AR, Weijs PJ, et al. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Crit Care. 2016;19:370.CrossRef Stapel SN, Grooth HJ, Alimohamad H, Elbers PW, Girbes AR, Weijs PJ, et al. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Crit Care. 2016;19:370.CrossRef
6.
go back to reference Mehta NM, Smallwood CD, Joosten KFM, Hulst JM, Tasker RC, Duggan CP. Accuracy of a simplified equation for energy expenditure based on bedside volumetric carbon dioxide elimination measurement a two-center study. Clin Nutr. 2015;34:151–5.CrossRefPubMed Mehta NM, Smallwood CD, Joosten KFM, Hulst JM, Tasker RC, Duggan CP. Accuracy of a simplified equation for energy expenditure based on bedside volumetric carbon dioxide elimination measurement a two-center study. Clin Nutr. 2015;34:151–5.CrossRefPubMed
7.
go back to reference Lillelund Rousing M, Hahn-Pedersen MH, Andreassen S, Pielmeier U, Preiser JC. Energy expenditure in critically ill patients estimated by population-based equations, indirect calorimetry and CO2-based indirect calorimetry. Ann Intensive Care. 2016;6(1):6.CrossRef Lillelund Rousing M, Hahn-Pedersen MH, Andreassen S, Pielmeier U, Preiser JC. Energy expenditure in critically ill patients estimated by population-based equations, indirect calorimetry and CO2-based indirect calorimetry. Ann Intensive Care. 2016;6(1):6.CrossRef
8.
go back to reference Oshima T, Graf S, Heiddeger CP, Genton L, Pugin J, Pichard C. Can calculation of energy expenditure based on CO2 measurements replace indirect calorimetry? Crit Care. 2017;21:13.CrossRefPubMedPubMedCentral Oshima T, Graf S, Heiddeger CP, Genton L, Pugin J, Pichard C. Can calculation of energy expenditure based on CO2 measurements replace indirect calorimetry? Crit Care. 2017;21:13.CrossRefPubMedPubMedCentral
10.
go back to reference Rehal MS, Fiskaare E, Tjäder I, Norberg Å, Rooyackers O, Wernerman J. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Crit Care. 2016;20:54.CrossRefPubMedPubMedCentral Rehal MS, Fiskaare E, Tjäder I, Norberg Å, Rooyackers O, Wernerman J. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Crit Care. 2016;20:54.CrossRefPubMedPubMedCentral
11.
go back to reference Clapis FC, Auxilladora-Martins M, Japur CC, Martins-Filho OA, Evora PR, Basile-Filho A. Mechanical ventilation mode (voumexpressure) does not change the variables obtained by indirect calorimetry in critically ill patients. J Crit Care. 2010;25:659.e19–6.CrossRef Clapis FC, Auxilladora-Martins M, Japur CC, Martins-Filho OA, Evora PR, Basile-Filho A. Mechanical ventilation mode (voumexpressure) does not change the variables obtained by indirect calorimetry in critically ill patients. J Crit Care. 2010;25:659.e19–6.CrossRef
12.
go back to reference McClave SA, Lowen CC, Kleber MJ, McCornell JW, Jung LY, Goldsmith LJ. Clinical use of the respiratory quotient obtained from indirect calorimetry. JPEN J Parenterer Enteral Nutr. 2003;27:21–6.CrossRef McClave SA, Lowen CC, Kleber MJ, McCornell JW, Jung LY, Goldsmith LJ. Clinical use of the respiratory quotient obtained from indirect calorimetry. JPEN J Parenterer Enteral Nutr. 2003;27:21–6.CrossRef
13.
go back to reference Sundström M, Tjäder I, Rooyackers O, Wernerman J. Indirect calorimetry in mechanically ventilated patients: a systematic comparison of three instruments. Clin Nutr. 2013;32:118–21.CrossRefPubMed Sundström M, Tjäder I, Rooyackers O, Wernerman J. Indirect calorimetry in mechanically ventilated patients: a systematic comparison of three instruments. Clin Nutr. 2013;32:118–21.CrossRefPubMed
14.
go back to reference Graf S, Karsegard VL, Viatte V, Heidegger CP, Fleury Y, Pichard C, et al. Evaluation of three indirect calorimetry devices in mechanically ventilated patients; which device compares best with the Deltatrac II? A prospective observational study. Clin Nutr. 2015;34:60–5.CrossRefPubMed Graf S, Karsegard VL, Viatte V, Heidegger CP, Fleury Y, Pichard C, et al. Evaluation of three indirect calorimetry devices in mechanically ventilated patients; which device compares best with the Deltatrac II? A prospective observational study. Clin Nutr. 2015;34:60–5.CrossRefPubMed
Metadata
Title
Validation of carbon dioxide production (VCO2) as a tool to calculate resting energy expenditure (REE) in mechanically ventilated critically ill patients: a retrospective observational study
Publication date
01-12-2018
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-2108-8

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue