Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Research

The preventive effect of antiplatelet therapy in acute respiratory distress syndrome: a meta-analysis

Authors: Yingqin Wang, Ming Zhong, Zhichao Wang, Jieqiong Song, Wei Wu, Duming Zhu

Published in: Critical Care | Issue 1/2018

Login to get access

Abstract

Background

Acute respiratory distress syndrome (ARDS) is a life-threatening condition with high mortality that imposes a serious medical burden. Antiplatelet therapy is a potential strategy for preventing ARDS in patients with a high risk of developing this condition. A meta-analysis was performed to investigate whether antiplatelet therapy could reduce the incidence of newly developed ARDS and its associated mortality in high-risk patients.

Methods

The Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, Embase, Medline, and the Web of Science were searched for published studies from inception to 26 October 2017. We included randomized clinical trials, cohort studies and case-control studies investigating antiplatelet therapy in adult patients presenting to the hospital or ICU with a high risk for ARDS. Baseline patient characteristics, interventions, controls and outcomes were extracted. Our primary outcome was the incidence of newly developed ARDS in high-risk patients. Secondary outcomes were hospital and ICU mortality. A random-effects or fixed-effects model was used for quantitative synthesis.

Results

We identified nine eligible studies including 7660 high-risk patients who received antiplatelet therapy. Based on seven observational studies, antiplatelet therapy was associated with a decreased incidence of ARDS (odds ratio (OR) 0.68, 95% confidence interval (CI) 0.52–0.88; I2 = 68.4%, p = 0.004). In two randomized studies, no significant difference was found in newly developed ARDS between the antiplatelet groups and placebo groups (OR 1.32, 95% CI 0.72–2.42; I 2 = 0.0%, p = 0.329). Antiplatelet therapy did not reduce hospital mortality in randomized studies (OR 1.15, 95% CI 0.58–2.27; I 2 = 0.0%; p = 0.440) or observational studies (OR 0.80, 95% CI 0.62–1.03; I2 = 31.9%, p = 0.221).

Conclusions

Antiplatelet therapy did not significantly decrease hospital mortality in high-risk patients. However, whether antiplatelet therapy is associated with a decreased incidence of ARDS in patients at a high risk of developing the condition remains unclear.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.CrossRefPubMed Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.CrossRefPubMed
2.
4.
go back to reference Standiford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res. 2016;167(1):183–91.CrossRefPubMed Standiford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res. 2016;167(1):183–91.CrossRefPubMed
5.
go back to reference Panka BA, de Grooth H-J, Spoelstra-de Man A, et al. Prevention or treatment of ARDS with aspirin: a review of preclinical models and meta-analysis of clinical studies. Shock. 2017;47(1):13–21.CrossRefPubMedPubMedCentral Panka BA, de Grooth H-J, Spoelstra-de Man A, et al. Prevention or treatment of ARDS with aspirin: a review of preclinical models and meta-analysis of clinical studies. Shock. 2017;47(1):13–21.CrossRefPubMedPubMedCentral
6.
go back to reference Herold S, Gabrielli NM, Vadasz I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2013;305(10):L665–81.CrossRefPubMed Herold S, Gabrielli NM, Vadasz I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2013;305(10):L665–81.CrossRefPubMed
7.
go back to reference Katz JN, Kolappa KP, Becker RC. Beyond thrombosis: the versatile platelet in critical illness. Chest. 2011;139(3):658–68.CrossRefPubMed Katz JN, Kolappa KP, Becker RC. Beyond thrombosis: the versatile platelet in critical illness. Chest. 2011;139(3):658–68.CrossRefPubMed
8.
go back to reference Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol. 2014;12(6):426–37.CrossRefPubMed Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol. 2014;12(6):426–37.CrossRefPubMed
9.
go back to reference McEver RP. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. 2002;14(5):581–6.CrossRefPubMed McEver RP. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. 2002;14(5):581–6.CrossRefPubMed
10.
go back to reference Gando S. Microvascular thrombosis and multiple organ dysfunction syndrome. Crit Care Med. 2010;38(2 Suppl):S35–42.CrossRefPubMed Gando S. Microvascular thrombosis and multiple organ dysfunction syndrome. Crit Care Med. 2010;38(2 Suppl):S35–42.CrossRefPubMed
11.
go back to reference Valerio-Rojas JC, Jaffer IJ, Kor DJ, et al. Outcomes of severe sepsis and septic shock patients on chronic antiplatelet treatment: a historical cohort study. Crit Care Res Prac. 2013;2013:782573. Valerio-Rojas JC, Jaffer IJ, Kor DJ, et al. Outcomes of severe sepsis and septic shock patients on chronic antiplatelet treatment: a historical cohort study. Crit Care Res Prac. 2013;2013:782573.
12.
13.
go back to reference Muller-Redetzky H. Targeting neutrophil extracellular traps in acute lung injury: a novel therapeutic approach in acute respiratory distress syndrome? Anesthesiology. 2015;122(4):725–7.CrossRefPubMed Muller-Redetzky H. Targeting neutrophil extracellular traps in acute lung injury: a novel therapeutic approach in acute respiratory distress syndrome? Anesthesiology. 2015;122(4):725–7.CrossRefPubMed
15.
go back to reference Smith TL, Weyrich AS. Platelets as central mediators of systemic inflammatory responses. Thromb Res. 2011;127(5):391–4.CrossRefPubMed Smith TL, Weyrich AS. Platelets as central mediators of systemic inflammatory responses. Thromb Res. 2011;127(5):391–4.CrossRefPubMed
16.
go back to reference Chelucci GL, Boncinelli S, Marsili M, et al. Aspirin effect on early and late changes in acute lung injury in sheep. Intensive Care Med. 1993;19(1):13–21.CrossRefPubMed Chelucci GL, Boncinelli S, Marsili M, et al. Aspirin effect on early and late changes in acute lung injury in sheep. Intensive Care Med. 1993;19(1):13–21.CrossRefPubMed
17.
go back to reference Gonçalves De Moraes VL, Vargaftig BB, Lefort J, et al. Effect of cyclo-oxygenase inhibitors and modulators of cyclic AMP formation on lipopolysaccharide-induced neutrophil infiltration in mouse lung. Br J Pharmacol. 1996;117(8):1792–6.CrossRefPubMedPubMedCentral Gonçalves De Moraes VL, Vargaftig BB, Lefort J, et al. Effect of cyclo-oxygenase inhibitors and modulators of cyclic AMP formation on lipopolysaccharide-induced neutrophil infiltration in mouse lung. Br J Pharmacol. 1996;117(8):1792–6.CrossRefPubMedPubMedCentral
18.
go back to reference Kor DJ, Carter RE, Park PK, et al. Effect of aspirin on development of ARDS in at-risk patients presenting to the emergency department: the LIPS-A randomized clinical trial. JAMA. 2016;315(22):2406–14.CrossRefPubMedPubMedCentral Kor DJ, Carter RE, Park PK, et al. Effect of aspirin on development of ARDS in at-risk patients presenting to the emergency department: the LIPS-A randomized clinical trial. JAMA. 2016;315(22):2406–14.CrossRefPubMedPubMedCentral
19.
go back to reference Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.CrossRefPubMedPubMedCentral Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.CrossRefPubMedPubMedCentral
20.
go back to reference Hudson LD, Milberg JA, Anardi D, et al. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151(2 Pt 1):293–301.CrossRefPubMed Hudson LD, Milberg JA, Anardi D, et al. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151(2 Pt 1):293–301.CrossRefPubMed
21.
go back to reference Gajic O, Dabbagh O, Park PK, et al. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med. 2011;183(4):462–70.CrossRefPubMed Gajic O, Dabbagh O, Park PK, et al. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med. 2011;183(4):462–70.CrossRefPubMed
22.
go back to reference Ferguson ND, Frutos-Vivar F, Esteban A, et al. Clinical risk conditions for acute lung injury in the intensive care unit and hospital ward: a prospective observational study. Crit Care. 2007;11(5):R96.CrossRefPubMedPubMedCentral Ferguson ND, Frutos-Vivar F, Esteban A, et al. Clinical risk conditions for acute lung injury in the intensive care unit and hospital ward: a prospective observational study. Crit Care. 2007;11(5):R96.CrossRefPubMedPubMedCentral
23.
24.
go back to reference Wells GA, Shea BJ, O'Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. Appl Eng Agric. 2014;18(6):727–34. Wells GA, Shea BJ, O'Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. Appl Eng Agric. 2014;18(6):727–34.
25.
go back to reference Wang L, Li H, Gu X, et al. Effect of antiplatelet therapy on acute respiratory distress syndrome and mortality in critically ill patients: a meta-analysis. PLoS One. 2016;11(5):e0154754.CrossRefPubMedPubMedCentral Wang L, Li H, Gu X, et al. Effect of antiplatelet therapy on acute respiratory distress syndrome and mortality in critically ill patients: a meta-analysis. PLoS One. 2016;11(5):e0154754.CrossRefPubMedPubMedCentral
26.
go back to reference Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94.CrossRefPubMed Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94.CrossRefPubMed
27.
go back to reference Elmariah S, Mauri L, Doros G, et al. Extended duration dual antiplatelet therapy and mortality: a systematic review and meta-analysis. Lancet. 2015;385(9970):792–8.CrossRefPubMed Elmariah S, Mauri L, Doros G, et al. Extended duration dual antiplatelet therapy and mortality: a systematic review and meta-analysis. Lancet. 2015;385(9970):792–8.CrossRefPubMed
28.
go back to reference Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. Naunyn-Schmiedeberg's Arch Exp Pathol Pharmakol. 2010;2011(14):S38. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. Naunyn-Schmiedeberg's Arch Exp Pathol Pharmakol. 2010;2011(14):S38.
30.
go back to reference Vincent JL, Brimioulle S, Berre J, et al. Prevention of the adult respiratory distress syndrome with dipyridamole. Crit Care Med. 1985;13(10):783–5.CrossRefPubMed Vincent JL, Brimioulle S, Berre J, et al. Prevention of the adult respiratory distress syndrome with dipyridamole. Crit Care Med. 1985;13(10):783–5.CrossRefPubMed
31.
go back to reference Chen W, Janz DR, Bastarache JA, et al. Prehospital aspirin use is associated with reduced risk of acute respiratory distress syndrome in critically ill patients: a propensity-adjusted analysis. Crit Care Med. 2015;43(4):801–7.CrossRefPubMedPubMedCentral Chen W, Janz DR, Bastarache JA, et al. Prehospital aspirin use is associated with reduced risk of acute respiratory distress syndrome in critically ill patients: a propensity-adjusted analysis. Crit Care Med. 2015;43(4):801–7.CrossRefPubMedPubMedCentral
32.
go back to reference Mazzeffi M, Kassa W, Gammie J, et al. Preoperative aspirin use and lung injury after aortic valve replacement surgery: A retrospective cohort study. Anesth Analg. 2015;121(2):271–7.CrossRefPubMed Mazzeffi M, Kassa W, Gammie J, et al. Preoperative aspirin use and lung injury after aortic valve replacement surgery: A retrospective cohort study. Anesth Analg. 2015;121(2):271–7.CrossRefPubMed
33.
go back to reference Kor DJ, Erlich J, Gong MN, et al. Association of prehospitalization aspirin therapy and acute lung injury: results of a multicenter international observational study of at-risk patients. Crit Care Med. 2011;39(11):2393–400.CrossRefPubMedPubMedCentral Kor DJ, Erlich J, Gong MN, et al. Association of prehospitalization aspirin therapy and acute lung injury: results of a multicenter international observational study of at-risk patients. Crit Care Med. 2011;39(11):2393–400.CrossRefPubMedPubMedCentral
34.
go back to reference Erlich JM, Talmor DS, Cartin-Ceba R, et al. Prehospitalization antiplatelet therapy is associated with a reduced incidence of acute lung injury: a population-based cohort study. Chest. 2011;139(2):289–95.CrossRefPubMed Erlich JM, Talmor DS, Cartin-Ceba R, et al. Prehospitalization antiplatelet therapy is associated with a reduced incidence of acute lung injury: a population-based cohort study. Chest. 2011;139(2):289–95.CrossRefPubMed
35.
go back to reference Tuinman PR, Vlaar AP, Binnenkade JM, et al. The effect of aspirin in transfusion-related acute lung injury in critically ill patients. Anaesthesia. 2012;67(6):594–9.CrossRefPubMed Tuinman PR, Vlaar AP, Binnenkade JM, et al. The effect of aspirin in transfusion-related acute lung injury in critically ill patients. Anaesthesia. 2012;67(6):594–9.CrossRefPubMed
36.
go back to reference Ahmed AH, Litell JM, Malinchoc M, et al. The role of potentially preventable hospital exposures in the development of acute respiratory distress syndrome: a population-based study. Crit Care Med. 2014;42(1):31–9.CrossRefPubMed Ahmed AH, Litell JM, Malinchoc M, et al. The role of potentially preventable hospital exposures in the development of acute respiratory distress syndrome: a population-based study. Crit Care Med. 2014;42(1):31–9.CrossRefPubMed
37.
go back to reference Otto GP, Sossdorf M, Boettel J, et al. Effects of low-dose acetylsalicylic acid and atherosclerotic vascular diseases on the outcome in patients with severe sepsis or septic shock. Platelets. 2013;24(6):480–5.CrossRefPubMed Otto GP, Sossdorf M, Boettel J, et al. Effects of low-dose acetylsalicylic acid and atherosclerotic vascular diseases on the outcome in patients with severe sepsis or septic shock. Platelets. 2013;24(6):480–5.CrossRefPubMed
38.
go back to reference Mandal RV, Mark EJ, Kradin RL. Megakaryocytes and platelet homeostasis in diffuse alveolar damage. Exp Mol Pathol. 2007;83(3):327–31.CrossRefPubMed Mandal RV, Mark EJ, Kradin RL. Megakaryocytes and platelet homeostasis in diffuse alveolar damage. Exp Mol Pathol. 2007;83(3):327–31.CrossRefPubMed
39.
go back to reference Schror K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin Thromb Hemost. 1997;23(4):349–56.CrossRefPubMed Schror K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin Thromb Hemost. 1997;23(4):349–56.CrossRefPubMed
40.
go back to reference Mohananey D, Sethi J, Villablanca PA, et al. Effect of antiplatelet therapy on mortality and acute lung injury in critically ill patients: a systematic review and meta-analysis. Ann Card Anaesth. 2016;19(4):626–37.CrossRefPubMedPubMedCentral Mohananey D, Sethi J, Villablanca PA, et al. Effect of antiplatelet therapy on mortality and acute lung injury in critically ill patients: a systematic review and meta-analysis. Ann Card Anaesth. 2016;19(4):626–37.CrossRefPubMedPubMedCentral
41.
go back to reference Al Harbi SA, Tamim HM, Al-Dorzi HM, et al. Association between aspirin therapy and the outcome in critically ill patients: a nested cohort study. BMC Pharmacol Toxicol. 2016;17:5.CrossRefPubMedPubMedCentral Al Harbi SA, Tamim HM, Al-Dorzi HM, et al. Association between aspirin therapy and the outcome in critically ill patients: a nested cohort study. BMC Pharmacol Toxicol. 2016;17:5.CrossRefPubMedPubMedCentral
42.
go back to reference Tsai MJ, Ou SM, Shih CJ, et al. Association of prior antiplatelet agents with mortality in sepsis patients: a nationwide population-based cohort study. Intensive Care Med. 2015;41(5):806–13.CrossRefPubMed Tsai MJ, Ou SM, Shih CJ, et al. Association of prior antiplatelet agents with mortality in sepsis patients: a nationwide population-based cohort study. Intensive Care Med. 2015;41(5):806–13.CrossRefPubMed
43.
go back to reference Falcone M, Russo A, Cangemi R, et al. Lower mortality rate in elderly patients with community-onset pneumonia on treatment with aspirin. J Am Heart Assoc. 2015;4(1):e001595.CrossRefPubMedPubMedCentral Falcone M, Russo A, Cangemi R, et al. Lower mortality rate in elderly patients with community-onset pneumonia on treatment with aspirin. J Am Heart Assoc. 2015;4(1):e001595.CrossRefPubMedPubMedCentral
44.
go back to reference Boyle AJ, Di Gangi S, Hamid UI, et al. Aspirin therapy in patients with acute respiratory distress syndrome (ARDS) is associated with reduced intensive care unit mortality: a prospective analysis. Crit Care. 2015;19:109.CrossRefPubMedPubMedCentral Boyle AJ, Di Gangi S, Hamid UI, et al. Aspirin therapy in patients with acute respiratory distress syndrome (ARDS) is associated with reduced intensive care unit mortality: a prospective analysis. Crit Care. 2015;19:109.CrossRefPubMedPubMedCentral
45.
go back to reference Harr JN, Moore EE, Johnson J, et al. Antiplatelet therapy is associated with decreased transfusion-associated risk of lung dysfunction, multiple organ failure, and mortality in trauma patients. Crit Care Med. 2013;41(2):399–404.CrossRefPubMedPubMedCentral Harr JN, Moore EE, Johnson J, et al. Antiplatelet therapy is associated with decreased transfusion-associated risk of lung dysfunction, multiple organ failure, and mortality in trauma patients. Crit Care Med. 2013;41(2):399–404.CrossRefPubMedPubMedCentral
46.
go back to reference Gross AK, Dunn SP, Feola DJ, et al. Clopidogrel treatment and the incidence and severity of community acquired pneumonia in a cohort study and meta-analysis of antiplatelet therapy in pneumonia and critical illness. J Thromb Thrombolysis. 2013;35(2):147–54.CrossRefPubMedPubMedCentral Gross AK, Dunn SP, Feola DJ, et al. Clopidogrel treatment and the incidence and severity of community acquired pneumonia in a cohort study and meta-analysis of antiplatelet therapy in pneumonia and critical illness. J Thromb Thrombolysis. 2013;35(2):147–54.CrossRefPubMedPubMedCentral
47.
go back to reference Losche W, Boettel J, Kabisch B, et al. Do aspirin and other antiplatelet drugs reduce the mortality in critically ill patients? Thrombosis. 2012;2012:720254.CrossRefPubMed Losche W, Boettel J, Kabisch B, et al. Do aspirin and other antiplatelet drugs reduce the mortality in critically ill patients? Thrombosis. 2012;2012:720254.CrossRefPubMed
48.
go back to reference Eisen DP, Reid D, McBryde ES. Acetyl salicylic acid usage and mortality in critically ill patients with the systemic inflammatory response syndrome and sepsis. Crit Care Med. 2012;40(6):1761–7.CrossRefPubMed Eisen DP, Reid D, McBryde ES. Acetyl salicylic acid usage and mortality in critically ill patients with the systemic inflammatory response syndrome and sepsis. Crit Care Med. 2012;40(6):1761–7.CrossRefPubMed
49.
go back to reference Winning J, Neumann J, Kohl M, et al. Antiplatelet drugs and outcome in mixed admissions to an intensive care unit. Crit Care Med. 2010;38(1):32–7.CrossRefPubMed Winning J, Neumann J, Kohl M, et al. Antiplatelet drugs and outcome in mixed admissions to an intensive care unit. Crit Care Med. 2010;38(1):32–7.CrossRefPubMed
50.
go back to reference Winning J, Reichel J, Eisenhut Y, et al. Anti-platelet drugs and outcome in severe infection: clinical impact and underlying mechanisms. Platelets. 2009;20(1):50–7.CrossRefPubMed Winning J, Reichel J, Eisenhut Y, et al. Anti-platelet drugs and outcome in severe infection: clinical impact and underlying mechanisms. Platelets. 2009;20(1):50–7.CrossRefPubMed
51.
go back to reference Chalmers JD, Singanayagam A, Murray MP, et al. Prior statin use is associated with improved outcomes in community-acquired pneumonia. Am J Med. 2008;121(11):1002–7. e1.CrossRefPubMed Chalmers JD, Singanayagam A, Murray MP, et al. Prior statin use is associated with improved outcomes in community-acquired pneumonia. Am J Med. 2008;121(11):1002–7. e1.CrossRefPubMed
Metadata
Title
The preventive effect of antiplatelet therapy in acute respiratory distress syndrome: a meta-analysis
Authors
Yingqin Wang
Ming Zhong
Zhichao Wang
Jieqiong Song
Wei Wu
Duming Zhu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-1988-y

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue