Skip to main content
Top
Published in: Critical Care 1/2017

Open Access 01-12-2017 | Research

Early troponin I in critical illness and its association with hospital mortality: a cohort study

Authors: Annemarie B. Docherty, Malcolm Sim, Joao Oliveira, Michael Adlam, Marlies Ostermann, Timothy S. Walsh, John Kinsella, Nazir I. Lone

Published in: Critical Care | Issue 1/2017

Login to get access

Abstract

Background

Troponin I (TnI) is frequently elevated in critical illness, but its interpretation is unclear. Our primary objectives in this study were to evaluate whether TnI is associated with hospital mortality and if this association persists after adjusting for potential confounders. We also aimed to ascertain whether addition of TnI to the Acute Physiological and Chronic Health Evaluation II (APACHE II) risk prediction model improves its performance in general intensive care unit (ICU) populations.

Methods

We performed an observational cohort study with independent derivation and validation cohorts in two general level 3 ICU departments in the United Kingdom. The derivation cohort was a 4.5-year cohort (2010–2014) of general ICU index admissions (n = 1349). The validation cohort was used for secondary analysis of a prospective study dataset (2010) (n = 145). The primary exposure was plasma TnI concentration taken within 24 h of ICU admission. The primary outcome was hospital mortality. We performed multivariate regression, adjusting for components of the APACHE II model. We derived the risk prediction score from the multivariable model with TnI.

Results

Hospital mortality was 37.3% (n = 242) for patients with detectable TnI, compared with 14.6% (n = 102) for patients without detectable TnI. There was a significant univariate association between TnI and hospital mortality (OR per doubling TnI 1.16, 95% CI 1.13–1.20, p < 0.001). This persisted after adjustment for APACHE II model components (TnI OR 1.05, 95% CI 1.01–1.09, p = 0.003). TnI correlated most strongly with the acute physiology score (APS) component of APACHE II (r = 0.39). Addition of TnI to the APACHE II model did not improve discrimination (APACHE II concordance statistic [c-index] 0.835, 95% CI 0.811–0.858; APACHE II + TnI c-index 0.837, 95% CI 0.813–0.860; p = 0.330) or other measures of model performance.

Conclusions

TnI is an independent predictor of hospital mortality and correlates most highly with the APS component of APACHE II. It does not improve risk prediction. We would not advocate the adoption of routine troponin analysis on admission to ICU, and we recommend that troponin be measured only if clinically indicated.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Eur Heart J. 2012;33(20):2551–67.CrossRefPubMed Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Eur Heart J. 2012;33(20):2551–67.CrossRefPubMed
2.
go back to reference Becattini C, Vedovati MC, Agnelli G. Prognostic value of troponins in acute pulmonary embolism: a meta-analysis. Circulation. 2007;116(4):427–33.CrossRefPubMed Becattini C, Vedovati MC, Agnelli G. Prognostic value of troponins in acute pulmonary embolism: a meta-analysis. Circulation. 2007;116(4):427–33.CrossRefPubMed
3.
go back to reference Ostermann M, Lo J, Toolan M, Tuddenham E, Sanderson B, Lei K, et al. A prospective study of the impact of serial troponin measurements on the diagnosis of myocardial infarction and hospital and six-month mortality in patients admitted to ICU with non-cardiac diagnoses. Crit Care. 2014;18(2):R62.CrossRefPubMedPubMedCentral Ostermann M, Lo J, Toolan M, Tuddenham E, Sanderson B, Lei K, et al. A prospective study of the impact of serial troponin measurements on the diagnosis of myocardial infarction and hospital and six-month mortality in patients admitted to ICU with non-cardiac diagnoses. Crit Care. 2014;18(2):R62.CrossRefPubMedPubMedCentral
4.
go back to reference Lim W, Qushmaq I, Devereaux PJ, Heels-Ansdell D, Lauzier F, Ismaila AS, et al. Elevated cardiac troponin measurements in critically ill patients. Arch Intern Med. 2006;166(22):2446–54.CrossRef Lim W, Qushmaq I, Devereaux PJ, Heels-Ansdell D, Lauzier F, Ismaila AS, et al. Elevated cardiac troponin measurements in critically ill patients. Arch Intern Med. 2006;166(22):2446–54.CrossRef
5.
go back to reference Nagele P, Brown F, Gage BF, Gibson DW, Miller JP, Jaffe AS, et al. High-sensitivity cardiac troponin T in prediction and diagnosis of myocardial infarction and long-term mortality after noncardiac surgery. Am Heart J. 2013;166(2):325–32. e1.CrossRefPubMedPubMedCentral Nagele P, Brown F, Gage BF, Gibson DW, Miller JP, Jaffe AS, et al. High-sensitivity cardiac troponin T in prediction and diagnosis of myocardial infarction and long-term mortality after noncardiac surgery. Am Heart J. 2013;166(2):325–32. e1.CrossRefPubMedPubMedCentral
6.
go back to reference Writing Committee for the VISION Study Investigators. Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2017;317(16):1642–51.CrossRef Writing Committee for the VISION Study Investigators. Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2017;317(16):1642–51.CrossRef
7.
go back to reference Babuin L, Vasile VC, Rio Perez JA, Alegria JR, Chai HS, Afessa B, et al. Elevated cardiac troponin is an independent risk factor for short- and long-term mortality in medical intensive care unit patients. Crit Care Med. 2008;36(3):759–65.CrossRefPubMed Babuin L, Vasile VC, Rio Perez JA, Alegria JR, Chai HS, Afessa B, et al. Elevated cardiac troponin is an independent risk factor for short- and long-term mortality in medical intensive care unit patients. Crit Care Med. 2008;36(3):759–65.CrossRefPubMed
8.
go back to reference Wu TT, Yuan A, Chen CY, Chen WJ, Luh KT, Kuo SH, et al. Cardiac troponin I levels are a risk factor for mortality and multiple organ failure in noncardiac critically ill patients and have an additive effect to the APACHE II score in outcome prediction. Shock. 2004;22(2):95–101.CrossRefPubMed Wu TT, Yuan A, Chen CY, Chen WJ, Luh KT, Kuo SH, et al. Cardiac troponin I levels are a risk factor for mortality and multiple organ failure in noncardiac critically ill patients and have an additive effect to the APACHE II score in outcome prediction. Shock. 2004;22(2):95–101.CrossRefPubMed
9.
go back to reference King DA, Codish S, Novack V, Barski L, Almog Y. The role of cardiac troponin I as a prognosticator in critically ill medical patients: a prospective observational cohort study. Crit Care. 2005;9(4):R390.CrossRefPubMedPubMedCentral King DA, Codish S, Novack V, Barski L, Almog Y. The role of cardiac troponin I as a prognosticator in critically ill medical patients: a prospective observational cohort study. Crit Care. 2005;9(4):R390.CrossRefPubMedPubMedCentral
10.
go back to reference Lim W, Qushmaq I, Cook DJ, Crowther MA, Heels-Ansdell D, Devereaux PJ, Troponin T Trials Group. Elevated troponin and myocardial infarction in the intensive care unit: a prospective study. Crit Care. 2005;9(6):R636.CrossRefPubMedPubMedCentral Lim W, Qushmaq I, Cook DJ, Crowther MA, Heels-Ansdell D, Devereaux PJ, Troponin T Trials Group. Elevated troponin and myocardial infarction in the intensive care unit: a prospective study. Crit Care. 2005;9(6):R636.CrossRefPubMedPubMedCentral
11.
go back to reference Higgins TL. Quantifying risk and benchmarking performance in the adult intensive care unit. J Intensive Care Med. 2007;22(3):141–56.CrossRefPubMed Higgins TL. Quantifying risk and benchmarking performance in the adult intensive care unit. J Intensive Care Med. 2007;22(3):141–56.CrossRefPubMed
12.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.CrossRefPubMed Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.CrossRefPubMed
13.
go back to reference Scottish Intensive Care Society Audit Group (SICSAG). Audit of critical care in Scotland 2012: reporting on 2011. Edinburgh: ISD Scotland Publications, Information Services Division, NHS National Services Scotland; 2012. Scottish Intensive Care Society Audit Group (SICSAG). Audit of critical care in Scotland 2012: reporting on 2011. Edinburgh: ISD Scotland Publications, Information Services Division, NHS National Services Scotland; 2012.
14.
go back to reference Harrison DA, Ferrando-Vivas P, Shahin J, Rowan KM, editors. Ensuring comparisons of health-care providers are fair: development and validation of risk prediction models for critically ill patients. Southampton, UK: NIHR Journals Library; 2015. Harrison DA, Ferrando-Vivas P, Shahin J, Rowan KM, editors. Ensuring comparisons of health-care providers are fair: development and validation of risk prediction models for critically ill patients. Southampton, UK: NIHR Journals Library; 2015.
15.
go back to reference Scottish Intensive Care Society Audit Group (SICSAG). Audit of critical care in Scotland 2015: reporting on 2014. Edinburgh: SICSAG; 2015. Scottish Intensive Care Society Audit Group (SICSAG). Audit of critical care in Scotland 2015: reporting on 2014. Edinburgh: SICSAG; 2015.
16.
go back to reference Haines R, Crichton S, Wilson J, Treacher D, Ostermann M. Cardiac biomarkers are associated with maximum stage of acute kidney injury in critically ill patients: a prospective analysis. Crit Care. 2017;21(1):88.CrossRefPubMedPubMedCentral Haines R, Crichton S, Wilson J, Treacher D, Ostermann M. Cardiac biomarkers are associated with maximum stage of acute kidney injury in critically ill patients: a prospective analysis. Crit Care. 2017;21(1):88.CrossRefPubMedPubMedCentral
17.
go back to reference Shah AS, Griffiths M, Lee KK, McAllister DA, Hunter AL, Ferry AV, et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study. BMJ. 2015;350:g7873.CrossRefPubMedPubMedCentral Shah AS, Griffiths M, Lee KK, McAllister DA, Hunter AL, Ferry AV, et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study. BMJ. 2015;350:g7873.CrossRefPubMedPubMedCentral
18.
go back to reference Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.CrossRefPubMed Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.CrossRefPubMed
19.
go back to reference R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015.
20.
go back to reference Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.CrossRef Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.CrossRef
21.
go back to reference Ambler G, Benner A. mfp: multiple fractional polynomials. R package version 1.5.2. 2015. Ambler G, Benner A. mfp: multiple fractional polynomials. R package version 1.5.2. 2015.
22.
go back to reference Harrell FE. rms: regression modeling strategies. R package version 4.5-0. 2016. Harrell FE. rms: regression modeling strategies. R package version 4.5-0. 2016.
23.
go back to reference Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.CrossRefPubMedPubMedCentral Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.CrossRefPubMedPubMedCentral
24.
go back to reference Aldridge C, Bion J, Boyal A, Chen YF, Clancy M, Evans T, et al. Weekend specialist intensity and admission mortality in acute hospital trusts in England: a cross-sectional study. Lancet. 2016;388(10040):178–86.CrossRefPubMedPubMedCentral Aldridge C, Bion J, Boyal A, Chen YF, Clancy M, Evans T, et al. Weekend specialist intensity and admission mortality in acute hospital trusts in England: a cross-sectional study. Lancet. 2016;388(10040):178–86.CrossRefPubMedPubMedCentral
25.
go back to reference Meacock R, Anselmi L, Kristensen SR, Doran T, Sutton M. Higher mortality rates amongst emergency patients admitted to hospital at weekends reflect a lower probability of admission. J Health Serv Res Policy. 2017;22(1):12–9.CrossRefPubMed Meacock R, Anselmi L, Kristensen SR, Doran T, Sutton M. Higher mortality rates amongst emergency patients admitted to hospital at weekends reflect a lower probability of admission. J Health Serv Res Policy. 2017;22(1):12–9.CrossRefPubMed
26.
go back to reference Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2012;307(21):2295–304.CrossRef Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2012;307(21):2295–304.CrossRef
27.
go back to reference Hickman PE, Potter JM, Aroney C, Koerbin G, Southcott E, Wu AH, et al. Cardiac troponin may be released by ischemia alone, without necrosis. Clin Chim Acta. 2010;411(5-6):318–23.CrossRefPubMed Hickman PE, Potter JM, Aroney C, Koerbin G, Southcott E, Wu AH, et al. Cardiac troponin may be released by ischemia alone, without necrosis. Clin Chim Acta. 2010;411(5-6):318–23.CrossRefPubMed
28.
go back to reference Landesberg G, Beattie WS, Mosseri M, Jaffe AS, Alpert JS. Perioperative myocardial infarction. Circulation. 2009;119(22):2936–44.CrossRefPubMed Landesberg G, Beattie WS, Mosseri M, Jaffe AS, Alpert JS. Perioperative myocardial infarction. Circulation. 2009;119(22):2936–44.CrossRefPubMed
29.
go back to reference De Backer D, Orbegozo Cortes D, Donadello K, Vincent JL. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence. 2014;5(1):73–9.CrossRefPubMed De Backer D, Orbegozo Cortes D, Donadello K, Vincent JL. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence. 2014;5(1):73–9.CrossRefPubMed
30.
go back to reference Ostermann M, Ayis S, Tuddenham E, Lo J, Lei K, Smith J, et al. Cardiac troponin release is associated with biomarkers of inflammation and ventricular dilatation during critical illness. Shock. 2017;47(6):702–8.CrossRefPubMedPubMedCentral Ostermann M, Ayis S, Tuddenham E, Lo J, Lei K, Smith J, et al. Cardiac troponin release is associated with biomarkers of inflammation and ventricular dilatation during critical illness. Shock. 2017;47(6):702–8.CrossRefPubMedPubMedCentral
31.
go back to reference Agewall S, Giannitsis E, Jernberg T, Katus H. Troponin elevation in coronary vs. non-coronary disease. Eur Heart J. 2011;32(4):404–11.CrossRefPubMed Agewall S, Giannitsis E, Jernberg T, Katus H. Troponin elevation in coronary vs. non-coronary disease. Eur Heart J. 2011;32(4):404–11.CrossRefPubMed
Metadata
Title
Early troponin I in critical illness and its association with hospital mortality: a cohort study
Authors
Annemarie B. Docherty
Malcolm Sim
Joao Oliveira
Michael Adlam
Marlies Ostermann
Timothy S. Walsh
John Kinsella
Nazir I. Lone
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2017
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1800-4

Other articles of this Issue 1/2017

Critical Care 1/2017 Go to the issue