Skip to main content
Top
Published in: Critical Care 1/2017

Open Access 01-12-2017 | Research

Early EEG for outcome prediction of postanoxic coma: prospective cohort study with cost-minimization analysis

Authors: Lotte Sondag, Barry J. Ruijter, Marleen C. Tjepkema-Cloostermans, Albertus Beishuizen, Frank H. Bosch, Janine A. van Til, Michel J. A. M. van Putten, Jeannette Hofmeijer

Published in: Critical Care | Issue 1/2017

Login to get access

Abstract

Background

We recently showed that electroencephalography (EEG) patterns within the first 24 hours robustly contribute to multimodal prediction of poor or good neurological outcome of comatose patients after cardiac arrest. Here, we confirm these results and present a cost-minimization analysis. Early prognosis contributes to communication between doctors and family, and may prevent inappropriate treatment.

Methods

A prospective cohort study including 430 subsequent comatose patients after cardiac arrest was conducted at intensive care units of two teaching hospitals. Continuous EEG was started within 12 hours after cardiac arrest and continued up to 3 days. EEG patterns were visually classified as unfavorable (isoelectric, low-voltage, or burst suppression with identical bursts) or favorable (continuous patterns) at 12 and 24 hours after cardiac arrest. Outcome at 6 months was classified as good (cerebral performance category (CPC) 1 or 2) or poor (CPC 3, 4, or 5). Predictive values of EEG measures and cost-consequences from a hospital perspective were investigated, assuming EEG-based decision- making about withdrawal of life-sustaining treatment in the case of a poor predicted outcome.

Results

Poor outcome occurred in 197 patients (51% of those included in the analyses). Unfavorable EEG patterns at 24 hours predicted a poor outcome with specificity of 100% (95% CI 98–100%) and sensitivity of 29% (95% CI 22–36%). Favorable patterns at 12 hours predicted good outcome with specificity of 88% (95% CI 81–93%) and sensitivity of 51% (95% CI 42–60%). Treatment withdrawal based on an unfavorable EEG pattern at 24 hours resulted in a reduced mean ICU length of stay without increased mortality in the long term. This gave small cost reductions, depending on the timing of withdrawal.

Conclusions

Early EEG contributes to reliable prediction of good or poor outcome of postanoxic coma and may lead to reduced length of ICU stay. In turn, this may bring small cost reductions.
Literature
1.
go back to reference Zandbergen EG, de Haan RJ, Stoutenbeek CP, et al. Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet. 1998;352:1808–12.CrossRefPubMed Zandbergen EG, de Haan RJ, Stoutenbeek CP, et al. Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet. 1998;352:1808–12.CrossRefPubMed
2.
go back to reference Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.CrossRefPubMed Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.CrossRefPubMed
3.
go back to reference Sandroni C, Cariou A, Cavallaro F, et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1816–31.CrossRefPubMedPubMedCentral Sandroni C, Cariou A, Cavallaro F, et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1816–31.CrossRefPubMedPubMedCentral
4.
5.
go back to reference Wijdicks EF, Hijdra A, Young GB, Quality Standards Subcommittee of the American Academy of Neurology, et al. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67:203–10. Wijdicks EF, Hijdra A, Young GB, Quality Standards Subcommittee of the American Academy of Neurology, et al. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67:203–10.
6.
go back to reference Tjepkema-Cloostermans MC, van Meulen FB, Meinsma G, van Putten MJ. A Cerebral Recovery Index (CRI) for early prognosis in patients after cardiac arrest. Crit Care. 2013;17:R252.CrossRefPubMedPubMedCentral Tjepkema-Cloostermans MC, van Meulen FB, Meinsma G, van Putten MJ. A Cerebral Recovery Index (CRI) for early prognosis in patients after cardiac arrest. Crit Care. 2013;17:R252.CrossRefPubMedPubMedCentral
7.
go back to reference Hofmeijer J, Tjepkema-Cloostermans MC, van Putten MJ. Burst-suppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma. Clin Neurophysiol. 2014;125:947–54.CrossRefPubMed Hofmeijer J, Tjepkema-Cloostermans MC, van Putten MJ. Burst-suppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma. Clin Neurophysiol. 2014;125:947–54.CrossRefPubMed
9.
go back to reference Sculpher M, Drummond M, Buxton M. The interative use of economic evaluation as part of the process of health technology assesment. J Health Servs Res Policy. 1997;2:26–30. Sculpher M, Drummond M, Buxton M. The interative use of economic evaluation as part of the process of health technology assesment. J Health Servs Res Policy. 1997;2:26–30.
10.
go back to reference Tjepkema-Cloostermans MC, Hofmeijer J, Trof RJ, et al. Electroencephalogram predicts outcome in patients with postanoxic coma during mild therapeutic hypothermia. Crit Care Med. 2015;43:159–67.CrossRefPubMed Tjepkema-Cloostermans MC, Hofmeijer J, Trof RJ, et al. Electroencephalogram predicts outcome in patients with postanoxic coma during mild therapeutic hypothermia. Crit Care Med. 2015;43:159–67.CrossRefPubMed
11.
go back to reference Hofmeijer J, van Putten MJ. EEG in postanoxic coma: Prognostic and diagnostic value. Clin Neurophysiol. 2016;127:2047–55.CrossRefPubMed Hofmeijer J, van Putten MJ. EEG in postanoxic coma: Prognostic and diagnostic value. Clin Neurophysiol. 2016;127:2047–55.CrossRefPubMed
12.
go back to reference Sivaraju A, Gilmore EJ, Wira CR, et al. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med. 2015;41:1264–72.CrossRefPubMed Sivaraju A, Gilmore EJ, Wira CR, et al. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med. 2015;41:1264–72.CrossRefPubMed
13.
go back to reference Cloostermans MC, van Meulen FB, Eertman CJ, et al. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40:2867–75.CrossRefPubMed Cloostermans MC, van Meulen FB, Eertman CJ, et al. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40:2867–75.CrossRefPubMed
14.
go back to reference Hindriks R, van Putten MJAM. Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms. Neuroimage. 2012;60:2323–34.CrossRefPubMed Hindriks R, van Putten MJAM. Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms. Neuroimage. 2012;60:2323–34.CrossRefPubMed
15.
go back to reference Kusters AH, Vijn PC, van den Brom WE, Haberham ZL, Venker-van Haagen AJ, Hellebrekers LJ. EEG-burst-suppression-controlled propofol anesthesia in the dog. Vet Q. 1998;20 Suppl 1:S105–6.CrossRefPubMed Kusters AH, Vijn PC, van den Brom WE, Haberham ZL, Venker-van Haagen AJ, Hellebrekers LJ. EEG-burst-suppression-controlled propofol anesthesia in the dog. Vet Q. 1998;20 Suppl 1:S105–6.CrossRefPubMed
16.
go back to reference Rossetti AO, Tovar Quiroga DF, Juan E, Novy J, White RD, Ben-Hamouda N, Britton JW, Oddo M, Rabinstein AA. Electroencephalography Predicts Poor and Good Outcomes After Cardiac Arrest: A Two-Center Study. Crit Care Med. 2017. doi:10.1097/CCM.0000000000002337. [Epub ahead of print]. Rossetti AO, Tovar Quiroga DF, Juan E, Novy J, White RD, Ben-Hamouda N, Britton JW, Oddo M, Rabinstein AA. Electroencephalography Predicts Poor and Good Outcomes After Cardiac Arrest: A Two-Center Study. Crit Care Med. 2017. doi:10.​1097/​CCM.​0000000000002337​. [Epub ahead of print].
17.
go back to reference Rossetti AO, Oddo M, Logroscino G, Kaplan PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67:301–7.PubMed Rossetti AO, Oddo M, Logroscino G, Kaplan PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67:301–7.PubMed
18.
go back to reference Oddo M, Rossetti AO. Early multimodal outcome prediction after cardiac arrest in patients treated with hypothermia. Crit Care Med. 2014;42:1340–7.CrossRefPubMed Oddo M, Rossetti AO. Early multimodal outcome prediction after cardiac arrest in patients treated with hypothermia. Crit Care Med. 2014;42:1340–7.CrossRefPubMed
19.
go back to reference Zandbergen EG, Hijdra A, Koelman JH, et al. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology. 2006;66:62–8.CrossRefPubMed Zandbergen EG, Hijdra A, Koelman JH, et al. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology. 2006;66:62–8.CrossRefPubMed
Metadata
Title
Early EEG for outcome prediction of postanoxic coma: prospective cohort study with cost-minimization analysis
Authors
Lotte Sondag
Barry J. Ruijter
Marleen C. Tjepkema-Cloostermans
Albertus Beishuizen
Frank H. Bosch
Janine A. van Til
Michel J. A. M. van Putten
Jeannette Hofmeijer
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2017
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1693-2

Other articles of this Issue 1/2017

Critical Care 1/2017 Go to the issue