Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Editorial

Fecal microbiota transplantation for multiple organ dysfunction syndrome

Authors: Nathan J. Klingensmith, Craig M. Coopersmith

Published in: Critical Care | Issue 1/2016

Login to get access

Excerpt

Approximately 40 trillion bacteria reside inside the human intestine, meaning there are at least as many cells of microbial origin as human origin [1]. While it was once believed that bacteria and humans simply co-existed in the same space, a wide body of evidence now suggests that host–microbial communication is more complex than ever imagined and the microbiome plays a critical role in maintaining host homeostasis. The microbiome is also altered in multiple disease states, including heart disease [2], cancer [3], and Clostridium difficile infection [4], with changes detectable in microbial composition, number, diversity, and virulence compared to healthy controls. While the majority of studies linking the microbiome to disease are associative, there is increasing evidence that the microbiome plays a crucial role in mediating the pathophysiology of multiple acute and chronic illnesses. …
Literature
1.
go back to reference Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40.CrossRefPubMed Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40.CrossRefPubMed
2.
go back to reference Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circ Res. 2016;119(8):956–64.CrossRefPubMed Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circ Res. 2016;119(8):956–64.CrossRefPubMed
3.
go back to reference Rajagopala SV, Yooseph S, Harkins DM, Moncera KJ, Zabokrtsky KB, Torralba MG, et al. Gastrointestinal microbial populations can distinguish pediatric and adolescent acute lymphoblastic leukemia (ALL) at the time of disease diagnosis. BMC Genomics. 2016;17(1):635.CrossRefPubMedPubMedCentral Rajagopala SV, Yooseph S, Harkins DM, Moncera KJ, Zabokrtsky KB, Torralba MG, et al. Gastrointestinal microbial populations can distinguish pediatric and adolescent acute lymphoblastic leukemia (ALL) at the time of disease diagnosis. BMC Genomics. 2016;17(1):635.CrossRefPubMedPubMedCentral
4.
go back to reference Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, et al. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol. 2013;51(9):2884–92.CrossRefPubMedPubMedCentral Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, et al. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol. 2013;51(9):2884–92.CrossRefPubMedPubMedCentral
5.
go back to reference Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin. 2016;32(2):203–12.CrossRefPubMed Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin. 2016;32(2):203–12.CrossRefPubMed
6.
go back to reference McDonald D, Ackermann G, Khailova L, Baird C, Heyland D, Kozar R, et al. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016;1(4):e00199–16.CrossRefPubMedPubMedCentral McDonald D, Ackermann G, Khailova L, Baird C, Heyland D, Kozar R, et al. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016;1(4):e00199–16.CrossRefPubMedPubMedCentral
9.
go back to reference Perez E, Lee CH, Petrof EO. A practical method for preparation of fecal microbiota transplantation. Methods Mol Biol Clifton NJ. 2016;1476:259–67.CrossRef Perez E, Lee CH, Petrof EO. A practical method for preparation of fecal microbiota transplantation. Methods Mol Biol Clifton NJ. 2016;1476:259–67.CrossRef
10.
go back to reference Chapman BC, Moore HB, Overbey DM, Morton AP, Harnke B, Gerich ME, et al. Fecal microbiota transplant in patients with Clostridium difficile infection: a systematic review. J Trauma Acute Care Surg. 2016;81(4):756–64.CrossRefPubMed Chapman BC, Moore HB, Overbey DM, Morton AP, Harnke B, Gerich ME, et al. Fecal microbiota transplant in patients with Clostridium difficile infection: a systematic review. J Trauma Acute Care Surg. 2016;81(4):756–64.CrossRefPubMed
13.
go back to reference Wei Y, Yang J, Wang J, Yang Y, Huang J, Gong H, et al. Successful treatment with fecal microbiota tranplantation in patients with multiple organ dysfunction syndrome and diarrhea following severe sepsis. Crit Care. 2016;20(1):332.CrossRefPubMedPubMedCentral Wei Y, Yang J, Wang J, Yang Y, Huang J, Gong H, et al. Successful treatment with fecal microbiota tranplantation in patients with multiple organ dysfunction syndrome and diarrhea following severe sepsis. Crit Care. 2016;20(1):332.CrossRefPubMedPubMedCentral
14.
go back to reference Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637.CrossRefPubMed Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637.CrossRefPubMed
15.
go back to reference Suau A, Bonnet R, Sutren M, Godon J-J, Gibson GR, Collins MD, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 1999;65(11):4799.PubMedPubMedCentral Suau A, Bonnet R, Sutren M, Godon J-J, Gibson GR, Collins MD, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 1999;65(11):4799.PubMedPubMedCentral
Metadata
Title
Fecal microbiota transplantation for multiple organ dysfunction syndrome
Authors
Nathan J. Klingensmith
Craig M. Coopersmith
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1567-z

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue