Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Review

The right ventricle: interaction with the pulmonary circulation

Author: Michael R. Pinsky

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

The primary role of the right ventricle (RV) is to deliver all the blood it receives per beat into the pulmonary circulation without causing right atrial pressure to rise. To the extent that it also does not impede left ventricular (LV) filling, cardiac output responsiveness to increased metabolic demand is optimized. Since cardiac output is a function of metabolic demand of the body, during stress and exercise states the flow to the RV can vary widely. Also, instantaneous venous return varies widely for a constant cardiac output as ventilatory efforts alter the dynamic pressure gradient for venous return. Normally, blood flow varies with minimal changes in pulmonary arterial pressure. Similarly, RV filling normally occurs with minimal increases in right atrial pressure. When pulmonary vascular reserve is compromised RV ejection may also be compromised, increasing right atrial pressure and limiting maximal cardiac output. Acute increases in RV outflow resistance, as may occur with acute pulmonary embolism, will cause acute RV dilation and, by ventricular interdependence, markedly decreased LV diastolic compliance, rapidly spiraling to acute cardiogenic shock and death. Treatments include reversing the causes of pulmonary hypertension and sustaining mean arterial pressure higher than pulmonary artery pressure to maximal RV coronary blood flow. Chronic pulmonary hypertension induces progressive RV hypertrophy to match RV contractility to the increased pulmonary arterial elastance. Once fully developed, RV hypertrophy is associated with a sustained increase in right atrial pressure, impaired LV filling, and decreased exercise tolerance. Treatment focuses on pharmacologic therapies to selectively reduce pulmonary vasomotor tone and diuretics to minimize excessive RV dilation. Owning to the irreversible nature of most forms of pulmonary hypertension, when the pulmonary arterial elastance greatly exceeds the adaptive increase in RV systolic elastance, due to RV dilation, progressive pulmonary vascular obliteration, or both, end stage cor pulmonale ensues. If associated with cardiogenic shock, it can effectively be treated only by artificial ventricular support or lung transplantation. Knowing how the RV adapts to these stresses, its sign posts, and treatment options will greatly improve the bedside clinician’s ability to diagnose and treat RV dysfunction.
Literature
1.
go back to reference Starr I, Jeffers WA, Meade RH. The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease. Am Heart J. 1943;26:291–301.CrossRef Starr I, Jeffers WA, Meade RH. The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease. Am Heart J. 1943;26:291–301.CrossRef
2.
go back to reference Taylor RR, Corell JW, Sonnenblick EH, Ross Jr J. Dependence of ventricular distensibility on filling the opposite ventricle. Am J Physiol. 1967;213:711–8.PubMed Taylor RR, Corell JW, Sonnenblick EH, Ross Jr J. Dependence of ventricular distensibility on filling the opposite ventricle. Am J Physiol. 1967;213:711–8.PubMed
3.
go back to reference Jardin F, Delorme G, Hardy A, et al. Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology. 1990;72:966–70. Jardin F, Delorme G, Hardy A, et al. Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology. 1990;72:966–70.
4.
go back to reference Mitchell JR, Whitelaw WA, Sas R, et al. RV filling modulates LV function by direct ventricular interaction during mechanical ventilation. Am J Physiol 2005; 289:H549–57. Mitchell JR, Whitelaw WA, Sas R, et al. RV filling modulates LV function by direct ventricular interaction during mechanical ventilation. Am J Physiol 2005; 289:H549–57.
5.
go back to reference Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol. 1984;56:765–71.PubMed Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol. 1984;56:765–71.PubMed
6.
go back to reference Takata M, Harasawa Y, Beloucif S, Robotham JL. Coupled vs. uncoupled pericardial restraint: effects on cardiac chamber interactions. J Appl Physiol. 1997;83:1799–813.PubMed Takata M, Harasawa Y, Beloucif S, Robotham JL. Coupled vs. uncoupled pericardial restraint: effects on cardiac chamber interactions. J Appl Physiol. 1997;83:1799–813.PubMed
7.
go back to reference Maughan WL, Shoukas AA, Sagawa K, Weisfeldt ML. Instantaneous pressure-volume relationships of the canine right ventricle. Circ Res. 1979;44:309–15.CrossRefPubMed Maughan WL, Shoukas AA, Sagawa K, Weisfeldt ML. Instantaneous pressure-volume relationships of the canine right ventricle. Circ Res. 1979;44:309–15.CrossRefPubMed
8.
go back to reference Sibbald WJ, Driedger AA. Right ventricular function in disease states: pathophysiologic considerations. Crit Care Med. 1983;11:339–46.CrossRefPubMed Sibbald WJ, Driedger AA. Right ventricular function in disease states: pathophysiologic considerations. Crit Care Med. 1983;11:339–46.CrossRefPubMed
9.
go back to reference Pinsky MR. Determinants of pulmonary arterial flow during respiration. J Appl Physiol. 1984;56:1237–45.CrossRefPubMed Pinsky MR. Determinants of pulmonary arterial flow during respiration. J Appl Physiol. 1984;56:1237–45.CrossRefPubMed
10.
go back to reference Tyberg JV, Taichman GC, Smith ER, et al. The relationship between pericardial pressure and right atrial pressure: an intraoperative study. Circulation. 1986;73:428–32.CrossRefPubMed Tyberg JV, Taichman GC, Smith ER, et al. The relationship between pericardial pressure and right atrial pressure: an intraoperative study. Circulation. 1986;73:428–32.CrossRefPubMed
11.
go back to reference Pinsky MR, DeSmet JM, Vincent JL. Effect of positive end-expiratory pressure on right ventricular function in humans. Am Rev Respir Dis. 1992;146:681–7.CrossRefPubMed Pinsky MR, DeSmet JM, Vincent JL. Effect of positive end-expiratory pressure on right ventricular function in humans. Am Rev Respir Dis. 1992;146:681–7.CrossRefPubMed
12.
go back to reference Martyn JAJ, Snider MT, Farago LF, Burke JE. Thermodilution right ventricular volume: a novel and better predictor of volume replacement in acute thermal injury. J Trauma. 1981;21:619–24.CrossRefPubMed Martyn JAJ, Snider MT, Farago LF, Burke JE. Thermodilution right ventricular volume: a novel and better predictor of volume replacement in acute thermal injury. J Trauma. 1981;21:619–24.CrossRefPubMed
13.
go back to reference Reuse C, Vincent JL, Pinsky MR. Measurements of right ventricular volumes during fluid challenge. Chest. 1990;98:1450–4.CrossRefPubMed Reuse C, Vincent JL, Pinsky MR. Measurements of right ventricular volumes during fluid challenge. Chest. 1990;98:1450–4.CrossRefPubMed
14.
go back to reference Dhainaut JF, Pinsky MR, Nouria S, Slomka F. Right ventricular function in human sepsis: a thermodilution study. Chest. 1997;112:1043–9.CrossRefPubMed Dhainaut JF, Pinsky MR, Nouria S, Slomka F. Right ventricular function in human sepsis: a thermodilution study. Chest. 1997;112:1043–9.CrossRefPubMed
15.
go back to reference Shippy CR, Appel PL, Shoemaker WC. Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med. 1984;12:107–12.CrossRefPubMed Shippy CR, Appel PL, Shoemaker WC. Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med. 1984;12:107–12.CrossRefPubMed
16.
go back to reference Jardin F, Gueret P, Dubourg O, et al. Right ventricular volumes by thermodilution in the adult respiratory distress syndrome. Chest. 1985;88:34–9.CrossRefPubMed Jardin F, Gueret P, Dubourg O, et al. Right ventricular volumes by thermodilution in the adult respiratory distress syndrome. Chest. 1985;88:34–9.CrossRefPubMed
17.
go back to reference Solda P, Pantaleo P, Perlini S, et al. Continuous monitoring of right ventricular volume changes using a conductance catheter in the rabbit. J Appl Physiol. 1992;73:1770–5.PubMed Solda P, Pantaleo P, Perlini S, et al. Continuous monitoring of right ventricular volume changes using a conductance catheter in the rabbit. J Appl Physiol. 1992;73:1770–5.PubMed
18.
go back to reference Pinsky MR, Perlini S, Solda PL, et al. Dynamic evaluation of ventricular interactions in the rabbit: Simultaneous measurement of biventricular pressure-volume loops. J Crit Care. 1996;11:65–76.CrossRefPubMed Pinsky MR, Perlini S, Solda PL, et al. Dynamic evaluation of ventricular interactions in the rabbit: Simultaneous measurement of biventricular pressure-volume loops. J Crit Care. 1996;11:65–76.CrossRefPubMed
19.
go back to reference Lorenz CH, Walker ES, Morgan VL, et al. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson. 1999;1:7–21.CrossRefPubMed Lorenz CH, Walker ES, Morgan VL, et al. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson. 1999;1:7–21.CrossRefPubMed
20.
go back to reference Dell’Italia LJ. The right ventricle: anatomy, physiology and clinical importance. Curr Probl Cardiol. 1991;16:653–720.PubMed Dell’Italia LJ. The right ventricle: anatomy, physiology and clinical importance. Curr Probl Cardiol. 1991;16:653–720.PubMed
21.
go back to reference Haeck ML, Scherptong RW, Marsan NA, et al. Prognostic value of right ventricular longitudinal peak strain in patients with pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5:628–36.CrossRefPubMed Haeck ML, Scherptong RW, Marsan NA, et al. Prognostic value of right ventricular longitudinal peak strain in patients with pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5:628–36.CrossRefPubMed
22.
go back to reference Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973;32:314–22.CrossRefPubMed Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973;32:314–22.CrossRefPubMed
23.
go back to reference Damiano RJ, La Follette P, Cox JL, et al. Significant left ventricular contribution to right ventricular systolic function. Am J Physiol. 1991;261:H1514–24.PubMed Damiano RJ, La Follette P, Cox JL, et al. Significant left ventricular contribution to right ventricular systolic function. Am J Physiol. 1991;261:H1514–24.PubMed
24.
go back to reference Woodard JC, Chow E, Farrar DJ. Isolated ventricular systolic interaction during transient reductions in left ventricular pressure. Circ Res. 1992;70:944–51.CrossRefPubMed Woodard JC, Chow E, Farrar DJ. Isolated ventricular systolic interaction during transient reductions in left ventricular pressure. Circ Res. 1992;70:944–51.CrossRefPubMed
25.
go back to reference Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thoracic Cardiovasc Surg. 2010;139:1316–24.CrossRef Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thoracic Cardiovasc Surg. 2010;139:1316–24.CrossRef
26.
go back to reference Kuehne T, Yilmaz S, Steendijk P, et al. Magnetic resonance imaging analysis of right ventricular pressure-volume loops in vivo validation and clinical application in patients with pulmonary hypertension. Circulation. 2004;110:2010–6.CrossRefPubMed Kuehne T, Yilmaz S, Steendijk P, et al. Magnetic resonance imaging analysis of right ventricular pressure-volume loops in vivo validation and clinical application in patients with pulmonary hypertension. Circulation. 2004;110:2010–6.CrossRefPubMed
27.
go back to reference Brooks H, Kirk ES, Vokonas PS, et al. Performance of the right ventricle under stress: relation to right coronary flow. J Clin Invest. 1971;50:2176–83.CrossRefPubMedPubMedCentral Brooks H, Kirk ES, Vokonas PS, et al. Performance of the right ventricle under stress: relation to right coronary flow. J Clin Invest. 1971;50:2176–83.CrossRefPubMedPubMedCentral
28.
go back to reference Pinsky MR, Kellum JA, Bellomo R. Central venous pressure is a stopping rule, not a target of fluid resuscitation. Crit Care Resusc. 2014;16:245–6.PubMed Pinsky MR, Kellum JA, Bellomo R. Central venous pressure is a stopping rule, not a target of fluid resuscitation. Crit Care Resusc. 2014;16:245–6.PubMed
29.
go back to reference Permutt S, Bromberger-Barnea B, Bane HN. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med Thorac. 1962;19:239–60.PubMed Permutt S, Bromberger-Barnea B, Bane HN. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med Thorac. 1962;19:239–60.PubMed
30.
go back to reference Grant BJB, Lieber BB. Compliance of the main pulmonary artery during the ventilatory cycle. J Appl Physiol. 1992;72:535–42.PubMed Grant BJB, Lieber BB. Compliance of the main pulmonary artery during the ventilatory cycle. J Appl Physiol. 1992;72:535–42.PubMed
31.
go back to reference Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.PubMed Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.PubMed
33.
go back to reference Novak RA, Matuschak GM, Pinsky MR. Effect of ventilatory frequency on regional pleural pressure. J Appl Physiol. 1988;65:1314–23.PubMed Novak RA, Matuschak GM, Pinsky MR. Effect of ventilatory frequency on regional pleural pressure. J Appl Physiol. 1988;65:1314–23.PubMed
34.
go back to reference Tsitlik JE, Halperin HR, Guerci AD, et al. Augmentation of pressure in a vessel indenting the surface of the lung. Ann Biomed Eng. 1987;15:259–84.CrossRefPubMed Tsitlik JE, Halperin HR, Guerci AD, et al. Augmentation of pressure in a vessel indenting the surface of the lung. Ann Biomed Eng. 1987;15:259–84.CrossRefPubMed
35.
go back to reference Cassidy SS, Wead WB, Seibert GB, Ramanathan M. Changes in left ventricular geometry during spontaneous breathing. J Appl Physiol. 1987;63:803–11.PubMed Cassidy SS, Wead WB, Seibert GB, Ramanathan M. Changes in left ventricular geometry during spontaneous breathing. J Appl Physiol. 1987;63:803–11.PubMed
36.
go back to reference Marini JJ, Culver BN, Butler J. Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis. 1980;124:382–6. Marini JJ, Culver BN, Butler J. Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis. 1980;124:382–6.
37.
go back to reference Cassidy SS, Robertson CH, Pierce AK, et al. Cardiovascular effects of positive end-expiratory pressure in dogs. J Appl Physiol. 1978;4:743–9. Cassidy SS, Robertson CH, Pierce AK, et al. Cardiovascular effects of positive end-expiratory pressure in dogs. J Appl Physiol. 1978;4:743–9.
38.
39.
go back to reference Jardin F, Farcot JC, Boisante L. Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med. 1981;304:387–92.CrossRefPubMed Jardin F, Farcot JC, Boisante L. Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med. 1981;304:387–92.CrossRefPubMed
40.
go back to reference Berglund JE, Halden E, Jakobson S, Landelius J. Echocardiographic analysis of cardiac function during high PEEP ventilation. Intensive Care Med. 1994;20:174–80.CrossRefPubMed Berglund JE, Halden E, Jakobson S, Landelius J. Echocardiographic analysis of cardiac function during high PEEP ventilation. Intensive Care Med. 1994;20:174–80.CrossRefPubMed
41.
go back to reference Stone IS, Barnes NC, James WY, et al. Lung deflation and cardiovascular structure and function in chronic obstructive pulmonary disease. A randomized controlled trial. Am J Respir Crit Care Med. 2016;193:717–26.CrossRefPubMed Stone IS, Barnes NC, James WY, et al. Lung deflation and cardiovascular structure and function in chronic obstructive pulmonary disease. A randomized controlled trial. Am J Respir Crit Care Med. 2016;193:717–26.CrossRefPubMed
42.
go back to reference Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245:H773–80.PubMed Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245:H773–80.PubMed
43.
go back to reference Brimioulle S, Wauthy P, Ewalenko P, et al. Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol. 2003;284:H1625–30.CrossRef Brimioulle S, Wauthy P, Ewalenko P, et al. Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol. 2003;284:H1625–30.CrossRef
44.
go back to reference Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986;250:R1021–7.PubMed Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986;250:R1021–7.PubMed
45.
go back to reference Starling MR. Left ventricular-arterial coupling relations in the normal human heart. Am Heart J. 1993;125:1659–66.CrossRefPubMed Starling MR. Left ventricular-arterial coupling relations in the normal human heart. Am Heart J. 1993;125:1659–66.CrossRefPubMed
46.
go back to reference Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985;56:586–95.CrossRefPubMed Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985;56:586–95.CrossRefPubMed
50.
go back to reference Bogaard HJ, Abe K, Noordegraaf AV, Voelkel NF. The right ventricle under pressure: Cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135:794–804.CrossRefPubMed Bogaard HJ, Abe K, Noordegraaf AV, Voelkel NF. The right ventricle under pressure: Cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135:794–804.CrossRefPubMed
51.
go back to reference Noordegraaf AV, Haddad F, Chin KM, et al. Right heart adaptation to pulmonary hypertension. J Am Coll Cardiol. 2013;62:D22–33.CrossRef Noordegraaf AV, Haddad F, Chin KM, et al. Right heart adaptation to pulmonary hypertension. J Am Coll Cardiol. 2013;62:D22–33.CrossRef
52.
go back to reference Simon MA, Mathier M, Deible C, et al. Phenotyping the right ventricle in patients with pulmonary hypertension. Clin Translat Sci. 2009;2:294–9.CrossRef Simon MA, Mathier M, Deible C, et al. Phenotyping the right ventricle in patients with pulmonary hypertension. Clin Translat Sci. 2009;2:294–9.CrossRef
53.
go back to reference Simon MA, Pinsky MR. Right ventricular dysfunction and failure in chronic pressure overload. Cardiol Res Pract. 2011;23:568095. Simon MA, Pinsky MR. Right ventricular dysfunction and failure in chronic pressure overload. Cardiol Res Pract. 2011;23:568095.
54.
go back to reference Fukuda Y, Tanaka H, Sugiyama D, et al. Utility of right ventricular free wall speckle-tracking strain for evaluation of right ventricular performance in patients with pulmonary hypertension. J Am Soc Echocardiogr. 2011;24:1101–8.CrossRefPubMed Fukuda Y, Tanaka H, Sugiyama D, et al. Utility of right ventricular free wall speckle-tracking strain for evaluation of right ventricular performance in patients with pulmonary hypertension. J Am Soc Echocardiogr. 2011;24:1101–8.CrossRefPubMed
55.
go back to reference Vanderpool RR, Pinsky MR, Naeije R, et al. Right ventricular-pulmonary arterial coupling predicts outcomes in patients referred for pulmonary hypertension. Heart. 2015;101:37–43.CrossRefPubMed Vanderpool RR, Pinsky MR, Naeije R, et al. Right ventricular-pulmonary arterial coupling predicts outcomes in patients referred for pulmonary hypertension. Heart. 2015;101:37–43.CrossRefPubMed
56.
go back to reference Schertz C, Pinsky MR. Effect of the pericardium on systolic ventricular interdependence in the dog. J Crit Care. 1993;8:17–23.CrossRefPubMed Schertz C, Pinsky MR. Effect of the pericardium on systolic ventricular interdependence in the dog. J Crit Care. 1993;8:17–23.CrossRefPubMed
57.
go back to reference Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116:238–48.CrossRefPubMed Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116:238–48.CrossRefPubMed
58.
go back to reference Janicki JS. Influence of the pericardium and ventricular interdependence on left ventricular diastolic and systolic function in patients with heart failure. Circulation. 1990;81.2(Suppl):III15–20. Janicki JS. Influence of the pericardium and ventricular interdependence on left ventricular diastolic and systolic function in patients with heart failure. Circulation. 1990;81.2(Suppl):III15–20.
59.
go back to reference Bove AA, Santamore WP. Ventricular interdependence. Progr Cardiovasc Dis. 1981;23:365–88.CrossRef Bove AA, Santamore WP. Ventricular interdependence. Progr Cardiovasc Dis. 1981;23:365–88.CrossRef
60.
go back to reference Jardin F, Dubourg O, Guéret P, et al. Quantitative two-dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol. 1987;10:1201–6.CrossRefPubMed Jardin F, Dubourg O, Guéret P, et al. Quantitative two-dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol. 1987;10:1201–6.CrossRefPubMed
61.
go back to reference Jardin F, Dubourg O, Bourdarias JP. Echocardiographic pattern of acute cor pulmonale. Chest. 1997;111:209–17.CrossRefPubMed Jardin F, Dubourg O, Bourdarias JP. Echocardiographic pattern of acute cor pulmonale. Chest. 1997;111:209–17.CrossRefPubMed
62.
go back to reference Kucher N, Rossi E, De Rosa M, Goldhaber SZ. Massive pulmonary embolism. Circulation. 2006;113:577–82.CrossRefPubMed Kucher N, Rossi E, De Rosa M, Goldhaber SZ. Massive pulmonary embolism. Circulation. 2006;113:577–82.CrossRefPubMed
63.
go back to reference Gulba DC, Lichtlen P, Schmid C, et al. Medical compared with surgical treatment for massive pulmonary embolism. Lancet. 1994;343(8897):576–7.CrossRefPubMed Gulba DC, Lichtlen P, Schmid C, et al. Medical compared with surgical treatment for massive pulmonary embolism. Lancet. 1994;343(8897):576–7.CrossRefPubMed
64.
go back to reference Vieillard-Baron A, Schmitt JM, Augarde R, et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med. 2001;29:1551–5.CrossRefPubMed Vieillard-Baron A, Schmitt JM, Augarde R, et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med. 2001;29:1551–5.CrossRefPubMed
65.
go back to reference Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography: endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.CrossRefPubMed Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography: endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.CrossRefPubMed
66.
go back to reference Vieillard-Baron A, Prin S, Chergui K, et al. Echo–Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med. 2002;166:1310–9.CrossRefPubMed Vieillard-Baron A, Prin S, Chergui K, et al. Echo–Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med. 2002;166:1310–9.CrossRefPubMed
67.
go back to reference Vieillard-Baron A, Page B, Augarde R, et al. Acute cor pulmonale in massive pulmonary embolism: incidence, echocardiographic pattern, clinical implications and recovery rate. Intensive Care Med. 2001;27:1481–6.CrossRefPubMed Vieillard-Baron A, Page B, Augarde R, et al. Acute cor pulmonale in massive pulmonary embolism: incidence, echocardiographic pattern, clinical implications and recovery rate. Intensive Care Med. 2001;27:1481–6.CrossRefPubMed
Metadata
Title
The right ventricle: interaction with the pulmonary circulation
Author
Michael R. Pinsky
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1440-0

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue